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A network approach to interbank contagion risk in South Africa 

Pierre Nkou Mananga,* Shiqiang Lin† and Hairui Zhang‡ § 

 

Abstract 

We investigate the resilience of the South African banking system using a dynamic 

agent-based model and the DebtRank algorithm. This approach enables us to identify 

each bank’s importance and vulnerability in the interbank network and is not limited to 

listed banks, as previous studies were. We find that larger banks are more systemically 

important, but a bank’s interbank-lending-to-equity multiple is significantly correlated 

with its vulnerability. Our research offers policymakers a direct and practical indicator 

for improved monitoring of financial stability. 
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1. Introduction 

The stability of the South African banking system has attracted increasing attention 

from researchers (see Brink and Georg 2011, Foggit et al. 2017, Walters et al. 2018 

and Havemann 2021) and policymakers (International Monetary Fund 2014, 2022) 

since the Asian financial crisis in 1997, when South Africa was the only country in sub-

Saharan Africa to be significantly affected by the crisis through financial channels 

(Harris 1999). This attention is due to the distinct features of the South African banking 

system, including its high degree of concentration, accelerated growth in assets, and 

opaque and intricate interconnections, which are often challenging to fully comprehend 

(International Monetary Fund 2014, 2022). 

 

In recent years, an increasing number of studies on systemic risk in South Africa have 

been conducted. Manguzvane and Mwamba (2019), Leukes and Mensah (2019), and 

Chatterjee and Sing (2021) have all examined systemic risk in the South African 

banking sector. However, these studies rely on market data for listed banks, which are 

restricted to the domestic systemically important banks (D-SIBs) and exclude unlisted 

small and medium-sized banks. 

 

To comprehensively grasp the intricacies of systemic risk in the South African banking 

sector, it is imperative to incorporate small and medium-sized banks into the analysis. 

Over the past three decades, South Africa has experienced 23 bank failures and 

deregistrations in its banking sector (see Annexure 1 for a comprehensive list of these 

occurrences). Notably, most of these banking failures were attributed to institutions in 

the small and medium-sized category. The most severe episodes of banking failure in 

South Africa occurred in 2002 and 2003 (Havemann 2021), triggered by the collapse 

of Saambou Bank, the seventh-largest bank in South Africa, in February 2002. 

Saambou’s failure quickly spread to small and medium-sized banks through contagion, 

resulting in an immediate run on seven banks. As a result, half the country’s banks had 

been deregistered by the end of 2003, triggering a banking crisis (Havemann 2021). 

This highlights the importance of investigating D-SIBs and small to medium-sized 

banks. The potential failures of small and medium-sized banks can also lead to 

substantial, often unanticipated, financial burdens for individuals, governments and 

society. In addition, the adoption of a risk-based supervision approach by the South 

African Reserve Bank (SARB) supports a more inclusive supervision process. This 
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approach aims to identify the most critical risks and vulnerabilities faced by individual 

banks in a financial system, regardless of their size. 

 

We used a network approach to study systemic risk in the South African interbank 

market for three reasons. First, our approach relies on banks’ balance sheet data, 

which allows us to include smaller banks in our analysis. These banks are often 

excluded from studies of systemic risk because they are unlisted, but a bank’s failure 

can significantly threaten the financial stability of the country’s banking sector 

regardless of the bank’s size. Second, the history of bank failures demonstrates both 

the importance and vulnerability of banks, especially the latter, as vulnerable banks 

are more likely to fail. This leads to our third reason: to identify the factors that 

contribute to a bank’s systemic importance and its vulnerability and to make 

suggestions for policymakers. 

 

This paper builds on the work of Lin and Zhang (2022) by combining the agent-based 

modelling (ABM) approach (Liu et al. 2020) to model the dynamic interbank network 

and the DebtRank algorithm (Battiston et al. 2012 and Bardoscia et al. 2015) to analyse 

the contagion risk and identify the important and vulnerable banks in the South African 

banking system. More importantly, we extend Lin and Zhang’s work (2022) by 

conducting a panel data analysis to investigate the business factors that impact a 

bank’s importance and vulnerability.  

 

The novelty of this paper is its finding on banks’ vulnerability and its suggestions for 

policymakers. We found insufficient evidence that a bank’s size contributes to its 

vulnerability, which indicates that larger banks are not necessarily less vulnerable. In 

other words, policymakers should not rely on size to monitor a bank’s vulnerability. Our 

results also show that increasing the capital ratio can substantially decrease 

vulnerability, but this effort will be considerably undermined if a bank has a higher 

interbank lending ratio. Due to the offsetting effect of these two ratios, we introduced 

the interbank-lending-to-equity multiple to measure a bank’s excess interbank lending 

in relation to its capital. Our results show that this multiple is positively and significantly 

correlated with vulnerability. This provides a direct and useful indicator for monitoring 

vulnerability and suggests that policymakers should pay closer attention to banks with 

high interbank-lending-to-equity multiples.  
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This paper makes two contributions. First, we extend the systemic risk analysis in the 

South African banking sector by including unlisted banks. This provides a more 

comprehensive overview of the risk landscape, in line with the risk-based supervision 

requirements of the SARB. Second, most of the literature on systemic risk focuses only 

on banks’ influences or impacts on the financial system, while less attention is paid to 

banks’ vulnerability. Our research sheds light on banks’ vulnerability, offering valuable 

insights to regulators. 

 

The rest of this paper is structured as follows: Section 2 discusses the relevant 

literature, data are presented in Section 3, the methodology is described in Section 4, 

Section 5 presents the results, and we conclude in Section 6. 

 

2. Literature review 

Section 2.1 of this paper discusses the growing body of literature on systemic risk in 

the South African financial landscape. We note, however, that many of these studies 

employ methodologies that rely predominantly on market data, excluding small and 

unlisted banks. The resulting analysis is consequently incomplete and warrants further 

exploration. This limitation can be overcome by using a network approach, which for 

systemic risk modelling requires two steps. The first step is to reconstruct an interbank 

network, discussed in Section 2.2. The second step is to consider how contagion risk 

is propagated through the network, discussed in Section 2.3. Section 2.4 discusses 

the driving factors that contribute to systemic risk in terms of systemic importance and 

vulnerability.  

 

2.1 Systemic risk  

Given the advances on the regulatory and supervisory fronts, the literature about 

systemic risk in South Africa is evolving (see Foggitt et al. 2017, Manguzvane and 

Mwamba 2019, Chatterjee and Sing 2021, and Havemann 2021). These studies 

identify risk characteristics in South Africa and serve as the basis for understanding 

systemic risk in the country. For instance, Manguzvane and Mwamba (2019) found 

that the risk of systemic failure in the South African banking system increased during 

the global financial crisis (GFC), identifying African Bank, which became insolvent in 

2014, as the riskiest bank in the country. Chatterjee and Sing (2021) note that although 
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the D-SIBs are not ‘global’ enough, the high concentration in the banking sector could 

significantly impact financial stability if any of these banks were to experience distress. 

However, these studies suffer from two inherent limitations. 

 

First, their reliance on conventional approaches (∆𝐶𝑜𝑉𝑎𝑅, systemic risk index (SRISK) 

and marginal expected shortfall) limits their focus to large banks only, as these 

methods are based on market data and thus exclude unlisted banks. Second, these 

studies focus on banks’ importance per the D-SIBs classification and lack analysis of 

their vulnerability. In reality, a highly vulnerable bank of any size can pose a significant 

threat to financial stability. As mentioned above, the collapse of Saambou Bank caused 

widespread small bank failures and triggered a banking crisis in 2002–2003. Thus, an 

analysis of the country’s systemic risk must include small and medium-sized banks to 

be comprehensive.  

 

Banks are interconnected as a result of various factors that stem from the nature of 

their operations and the financial system and because they carry out complex 

interbank transactions. From a methodological standpoint, the conventional approach 

to systemic risk thus tends to ignore the source of risk and the mechanism of risk 

propagation. These limitations can be circumvented through the network approach, 

which has several advantages over the conventional approach to systemic risk. First, 

the network approach allows for a more detailed analysis of the sources of risk, 

because each interbank claim can be established as an edge in the network. Second, 

it allows for a more detailed analysis of the mechanisms because the channels of 

propagation can be identified. Third, it can be used to identify the banks most 

vulnerable to systemic risk. A large body of literature is focused on the network 

approach to model systemic risk (see Gai and Kapadia 2010; Battiston et al. 2012; 

Hałaj and Kok 2013; Bluhm, Faia and Krahnen 2014; Elliott, Golub and Jackson 2014; 

Acemoglu, Ozdaglar and Tahbaz-Salehi 2015; Anand, Craig and von Peter 2015; and 

Langfield and Soramäki 2016). 

 

Research on the South African interbank network is limited. Brink and Georg (2011) 

propose a Network Systemic Importance Index to evaluate the systemic importance of 

South African banks. This index evaluates the size, interdependence and 

substitutability of each bank, but it does not indicate the default probability of individual 
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banks and must thus be supplemented with other macroprudential tools to provide a 

complete picture of systemic risk. Walters et al. (2018) present a network-based 

framework to model systemic risk that considers the propagation of shocks in a banking 

system. Using data from South African bank balance sheets, they show how one 

bank’s liquidity issues and default might contribute to market frictions, such as a loss 

of trust in the financial wellness of other banks. 

 

However, their research adopts the assumption of randomised edges when examining 

various network structures, thus incorporating potential structures that may not 

represent realistic networks. Among the network structures investigated are Erdős–

Rényi, disassortative and core-periphery networks. The Erdős–Rényi network is 

characterised by equal probabilities of connection among all node pairs, neglecting the 

influence of network structure on systemic risk. The disassortative network, in contrast, 

displays a tendency for high-degree nodes to connect with low-degree nodes, a 

condition that could cause substantial impacts on smaller, heavily dependent banks if 

a major bank were to fail. Lastly, the core-periphery network is delineated into two 

discrete groups: a highly connected ‘core’ and a ‘periphery’ only connected to core 

nodes. The inherent structure of this network might foster rapid propagation of a shock 

from the core to the periphery, thereby accelerating systemic crisis. However, to truly 

understand systemic risk in the absence of real interbank transactional data, we need 

a method for interbank network formation, which is discussed in the following 

subsection.  

 

2.2 Interbank network formation 

Maximum entropy (ME) is one of the leading methods for network formation, with many 

studies on interbank systemic risk based on this approach (see Upper and Worms 

2004, Wells 2004, Van Lelyveld and Liedorp 2006, Degryse and Nguyen 2007 and 

Mistrulli 2011). The ME method redistributes the links in a network by spreading the 

exposures as evenly as possible, subject to the constraints corresponding to the 

interbank assets and liabilities for each bank. However, this approach has been 

criticised for generating too many links, which can undervalue the extent of contagion 

(Mistrulli 2011). 
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To address the shortcoming of generating too many links, Anand, Craig and von Peter 

(2015) developed the minimum density (MD) method. Based on the economic rationale 

that interbank linkages are costly to add and maintain, minimum density assumes that 

banks would like to minimise the necessary number of links. Anand, Craig and von 

Peter (2015) used the balance sheet data of 1 800 German banks to construct the 

interbank networks with ME and MD. By comparing these estimated networks with the 

true one, they found that the true network lies between ME and MD, and that MD 

preserves some of the true network’s structural features better than ME. Furthermore, 

their findings suggest that ME tends to underestimate (and MD tends to overestimate) 

contagion risk, which results in the real network being somewhere between the 

networks generated by ME and MD.  

 

This leads to the ABM approach used by Liu et al. (2020) to simulate the interbank 

network based on the banks’ decisions and behaviours. In this model, each bank sets 

its targets for interbank lending-borrowing ratios and evaluates other borrowers with a 

score that combines size and relationship. Using the balance sheet data of 

6 600 United States banks between 2001 to 2014, Liu et al. (2020) reconstructed the 

interbank networks based on banks’ decision rules and behaviours, showing that ABM 

produces a network structure that is well-bounded by the ME and MD and possesses 

many features close to the real one. 

 

2.3 Interbank contagion 

The network architecture established with ABM forms the basis for the subsequent 

phase of analysis to understand the propagation of default risk within the network. A 

pioneering work for risk propagation is the Eisenberg and Noe (2001, henceforth EN) 

model. The EN model shows how to compute a set of payments that clear the network 

and identifies which nodes default as a result of an initial shock to the system. The 

clearing process is governed by certain assumptions, such as the limited liabilities of 

banks, the prioritisation of interbank liabilities and proportionate repayment to creditor 

banks. Using an iteration algorithm, EN can always find a fixed-point-of-payment vector 

for clearing payments among the banks. Thus, EN is also characterised as a 

deterministic method. This methodology allows for the calculation of default cascades, 

the reallocation of funds and systemic effects when dealing with a network of contracts 

(Caccioli et al. 2018).  
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One major drawback of EN is that a loss is triggered only by actual insolvency, even 

though losses can occur in the absence of default because of credit quality 

deterioration (Caccioli et al. 2018). In other words, EN fails to capture a bank’s loss 

when it is only in distress. The DebtRank distress propagation model, as delineated by 

Battiston et al. (2012) and Bardoscia et al. (2015), successfully addresses this 

shortcoming. Within the DebtRank framework, the incursion of a shock upon a bank 

elevates the associated probability of default. Consequently, the anticipated cash flow 

linked to exposures to the distressed bank diminishes. Were interbank assets subject 

to market valuation, the implication would be a diminishment in the valuation of 

interbank assets pertaining to banks interconnected with the distressed bank. 

DebtRank operates as a discrete-time mapping function delineating the temporal 

evolution of banks’ equity subsequent to the initial system shock (Caccioli et al. 2018). 

It uses the relative equity loss of a bank to assess its impact, that is, its contribution to 

the propagation of distress, and its vulnerability, that is, its susceptibility to distress (Lin 

and Zhang 2022).  

 

Lin and Zhang (2022) used EN and DebtRank to assess the contagion risks of Chinese 

banks and found that EN underestimates contagion risk because it fails to capture the 

distress propagation. However, they were able to calculate each bank’s vulnerability 

score using the DebtRank algorithm. Their results revealed a level of systemic risk 

among lower-tiered banks. This differs from previous studies in the Chinese interbank 

market, where no systemic risk was detected (see Cao et al. 2017 and Sun 2020). 

 

While Lin and Zhang (2022) show that a bank is more important if it is larger in size 

and has greater financial connectivity, the banks’ sizes were not correlated with their 

vulnerability. It is thus crucial to prioritise factors such as a bank’s interbank lending 

ratio and financial connectivity when assessing vulnerability. The interbank lending 

ratio, which measures the liquidity of the interbank market, is calculated by dividing the 

total amount of interbank lending by a bank’s total assets. Similarly, the interbank 

borrowing ratio represents the total amount of interbank borrowing divided by a bank’s 

total liabilities. These indicators offer valuable insights into a bank’s vulnerability and 

warrant increased attention in vulnerability assessments. 
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2.4 Driving factors for systemic risk 

Based on the identified systemic risk, another area of literature focuses on exploring 

its explanatory factors. According to Glasserman and Young (2015, 2016), a bank’s 

importance is associated with its asset size, external leverage and financial 

connectivity. Laeven, Ratnovski and Tong (2016) investigated the determinants of 

systemic risk, considering various factors, such as bank size, capital ratio, funding 

structure and market-based activity. The capital ratio measures a bank’s buffer against 

liquidity shock, while funding structure examines thea bank’s reliance on deposit 

funding, captured as the ratio of retail deposits to total assets. Market-based activity is 

measured as the ratio of loans to total assets to capture the bank’s involvement in 

market-based lending activities. Using ∆𝐶𝑜𝑉𝑎𝑅 and SRISK as measures for a bank’s 

risk, they found significant evidence that systemic risk increases with a bank’s size, but 

also that systemic risk is lower for better-capitalised banks. In addition, Lin and Zhang 

(2022) found the interbank lending ratio to be positively correlated with a bank’s 

vulnerability.  

 

Most studies in the field are devoted to explaining a bank’s systemic importance, while 

less attention has been paid to vulnerability; more studies are necessary to explore the 

driving factors for both importance and vulnerability. Following Lin and Zhang (2022), 

we used ABM and DebtRank to evaluate the importance and vulnerability of South 

African banks. We used a panel data analysis to explore their risk characteristics and 

assess the macroprudential implications.   

 

3. Data 

The South African banking sector comprises 31 banks, with the six largest ones 

classified as D-SIBs. The D-SIBs held 93.4% of the banking sector’s assets as of 

December 2021. The BA 100 returns from the SARB, which are representative of the 

regulated monthly balance sheet statistics of banks in South Africa, were utilised. The 

data cover the period from January 2008 to December 2022. The current investigation 

omits seven banks due to inadequate data availability across the entire temporal 

spectrum. The excluded banks are African Bank, BNP Paribas, Discovery Bank, 

BoCom Ltd, Tyme Bank, Goldman Sachs and ICICI Bank. Collectively, these entities 

represent a marginal 1.1% of the aggregate assets in the banking system, so our 

analysis nevertheless encompasses an extensive sample, representing almost 99% of 
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the banking sector. Table 1 presents pertinent details regarding the key balance sheet 

components for the banks included in this study. 

 

Table 1: Key balance sheet data 

No. Banks 
Total 

assets 

Total 

liabilities 

Total 

equities 

Interbank 

lending 

Interbank 

borrowing 

Panel (A): Balance sheet data 

1 Standard Bank SA Ltd  1 622.73   1 505.69   117.04   153.08   116.47  

2 FirstRand Ltd  1 435.44   1 327.34   108.10   78.37   46.49  

3 Absa Bank Ltd  1 352.94   1 253.29   99.65   79.58   150.42  

4 Nedbank Ltd  1 123.14   1 036.33   86.81   54.83   49.10  

5 Investec Bank Ltd  507.44   465.83   41.61   46.67   20.65  

6 Capitec Bank Ltd  174.36   142.72   31.64   20.84   0.23  

7 Citibank NA  85.32   75.63   9.69   25.98   4.29  

8 

HSBC Bank Plc 

(Johannesburg branch) 

 70.43   64.86   5.56   24.88   5.00  

9 

JPMorgan Chase bank, N.A. 

(Johannesburg branch) 

 65.23   51.48   13.76   20.82   7.16  

10 Standard Chartered Bank  43.31   38.46   4.85   10.42   1.46  

11 

China Construction Bank  

Corporation  

(Johannesburg branch) 

 41.78   35.99   5.79   19.92   14.60  

12 

Bank of China Limited  

(Johannesburg branch) 

 40.08   30.20   9.88   5.32   16.60  

13 Deutsche Bank AG  17.45   15.87   1.58   5.14   4.16  

14 Grindrod Bank  13.72   12.03   1.69   0.77   0.03  

15 Bidvest Bank  11.16   8.89   2.27   2.31   0.36  

16 Sasfin Bank  10.19   9.04   1.15   1.66   0.03  

17 State Bank of India  9.50   7.58   1.92   6.18   7.01  

18 Albaraka Bank Limited  8.60   7.77   0.83   2.07   0.00   

19 HBZ Bank Limited  7.91   7.33   0.59   1.60   0.10  

20 Ubank  5.32   4.90   0.42   0.20   0.00   

21 Access Bank  4.57   4.21   0.36   0.85   1.65  

22 Ithala Bank Ltd  3.15   2.76   0.39   0.58  0.00   

23 Bank of Taiwan Ltd  1.76   1.38   0.38   0.72   1.10  

24 Habib Bank  1.11   1.01   0.10   0.51   0.01  

Panel (B): Data statistics 

 Mean  277.36   254.61   22.75   23.47   18.62  

 Std. dev.  521.28   483.30   38.25   36.50   38.18  

 Min.  1.11   1.01   0.10   0.20  0.00   

 Max.  1 622.73   1 505.69   117.04   153.08   150.42  

Note: This table reports the key financial data of the 24 banks studied in this paper based on the result as of 

31 December 2021. The data are sorted in descending order by total assets in millions of ZAR. Panel (A) shows 

the values of the balance sheet items and Panel (B) shows the column-wise corresponding statistics.  

Source: Prudential Authorithy, SARB 
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Figure 1 shows the evolution of the banking sector in terms of total assets. This figure 

shows six D-SIBs, while the remaining small and medium-sized banks are shown in 

aggregate (the black line). The rest of the small banks are close in size to Investec 

Bank but are smaller than Standard Bank, FirstRand Bank, Absa Bank and Nedbank, 

illustrating the concentration of the banking sector. 

 

Figure 1: The progression of total assets for the South African banking sector from January 

2008 to December 2021  

 

Note: The chart shows the trend for six D-SIBs, with the other 25 banks shown in aggregate (the black line).  

Source: Prudential Authority, SARB 

 

The interbank market also grows quickly with the development of the banking sector. 

Figure 2a shows that the aggregate of interbank lending and borrowing roughly double 

their sizes for the observed period. Figure 2b indicates the imbalance of interbank 

lending-borrowing ratios among the banks. The D-SIBs (large dots) generally have 

lower interbank lending ratios (<0.1) and lower interbank borrowing ratios (<0.2); small 

banks typically have higher ratios for both.  
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Figure 2a: Aggregate of interbank lending-borrowing 

 

 

Figure 2b: Interbank lending-borrowing ratio  

 

Note: Figure 2a shows the aggregate of interbank lending and borrowing (in billion ZAR). Figure 2b is a scatterplot 

that illustrates the interbank borrowing ratio (along the x-axis) vs the interbank lending ratio (along the y-axis) as of 

December 2021. The bank’s total assets is represented by the dot size. 
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4. Model and methodology 

As mentioned earlier, three key methods are involved in this study. We use ABM (see 

Section 4.1) for network formation and DebtRank (see Section 4.2) to analyse 

contagion, including to identify important and vulnerable banks. Lastly, the ΔCoVaR 

approach (see Section 4.3) is used as a robustness check for systemic risk against 

DebtRank.  

 

4.1 Agent-based modelling 

A significant challenge in the literature on network contagion is the population of 

networks with incomplete information, specifically the estimation of bilateral exposures 

given marginal or aggregate information. To address this challenge, we use ABM to 

simulate financial network dynamics by taking into account the decisions made by each 

agent and striving to create a 1:1 representation of all the banks that constitute the 

South African financial system.  

 

We derive a network of bilateral exposures for short-term interbank borrowing by 

incorporating bank lending and borrowing behaviours based on individual bank 

balance sheet statistics. In ABM, each bank sets its target for interbank lending and 

borrowing ratios and acts as an agent to borrow and lend in the market. The borrowing 

requests are made to other banks at random. The lending banks make their lending 

decision based on an evaluation score of the borrowing bank’s size and relationship 

(see Section 4.1.2).  

 

We assume that a new cycle begins every month. During each cycle, all banks (or 

agents) in the system are required to complete three tasks: pay off outstanding debts, 

settle new obligations and update financial statements. Before taking on any new loans 

at the beginning of period 𝑡, banks must first pay all their overdue obligations from the 

period 𝑡 − 1 (see Section 4.1.1). Participating banks will begin to settle new debts (in 

accordance with the processes indicated in Section 4.1.2) as soon as all payments 

linked to debts have been cleared. Once this process is complete, banks in the system 

will revise their financial statements for the period 𝑡  to accurately represent the 

interbank assets and liabilities established (see Section 4.1.3). These processes go on 

into the subsequent cycle at time 𝑡 + 1 , and so forth. This recursive process is 

illustrated in Figure 3. 
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Figure 3: ABM flow chart  

 

 

Note: The ABM is a recursive flow comprised of three processes: paying outstanding debts for the previous period 

𝑡 − 1, starting to settle new obligations for the current period 𝑡, and updating financial data for the new lending-

borrowing positions and getting ready for the next step, 𝑡 + 1. 

 

4.1.1 Paying outstanding debts 

The South African interbank market is predominantly an overnight market. These 

typically take the form of bank call accounts and increasingly secured interbank 

transactions, predominantly in the triparty repo arrangement. 1  Considering the 

objectives of this research, it is stipulated that the secured interbank is of marginal 

significance. Call accounts are typical senior unsecured creditors and would thus rank 

similarly to other senior creditors of the bank. Consequently, the lending and borrowing 

conducted on the interbank market cannot be prioritised in the case of a default from 

a legal standpoint. 

 

It is also presumed that at the beginning of each cycle, all agents are required to pay 

off any outstanding debts before they approach their counterparties with requests for 

additional borrowing. The payment of outstanding debts is handled using the clearing 

payment vector of EN. Should a bank be unable to fulfil its commitments, the equity 

loss of its creditors will be triggered. According to the payment vector, the repayment 

amount will be computed on a proportional basis. If the losses incurred exceed the 

bank’s equity, the bank will default. Following Liu et al. (2020) and Lin and Zhang 

(2022), we developed an initial network by estimating the interbank network through 

ME. Subsequent interbank networks were then generated through the ABM approach.  

 

 

 

1  In a triparty repo arrangement, there are three parties involved: the borrower, the lender and the 
custodian. The borrower sells securities to the lender, who agrees to repurchase them later. The 
custodian holds the securities. This is a popular form of secured interbank transaction because it 
is safe and efficient. 
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4.1.2 Settling new debts 

Each bank initially establishes interbank lending and borrowing target ratios. 

Depending on the ratios it has established, each bank can then determine the annual 

target amounts for its interbank lending and borrowing activities. Banks that have not 

attained their target borrowing ratios would initiate random borrowing requests with 

other banks. If a lender cannot fulfil a bank’s request for borrowing, the borrowing bank 

will request another bank until the request is entirely satisfied. After going through all 

the lending banks in the system, the borrowing bank may end up with an unsatisfied 

funding gap if it does not match the lending requirements. 

 

On the lending side, when a lending bank receives a borrowing request, it must decide 

whether to lend and, if so, how much. The lender will evaluate the borrower based on 

the nature of their relationship as well as the size of the borrower. The relationship as 

described above can be determined as follows: 

 

 

, ,

log( ) if  and  have bilateral debts

( ) ( 1) if >0

0 otherwise
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debts i j
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


=  −
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where 𝑆𝑖,𝑗
𝑅  (𝑡) is the relationship score of bank 𝑗 (the borrower) evaluated by bank 𝑖 (the 

lender) in period 𝑡. The debts examined in this paper are reciprocal, directed and 

bilateral debts between banks 𝑖 and 𝑗. This indicates that debts may be owed by bank 

𝑖 to bank 𝑗 as well as by bank 𝑗 to bank 𝑖. The memory decaying factor parameter 𝜂 is 

fixed at 0.9 by default (Liu et al. 2020 and Lin and Zhang 2022). 

 

The size of the borrower is evaluated as: 
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where 𝑆𝑖,𝑗
𝑆 (𝑡) is the size score of bank 𝑗 evaluated by bank 𝑖 in period 𝑡, 𝐴𝑗 (𝑡) is the 

total assets of bank 𝑗 at time 𝑡, and ∏𝑖,𝑘(𝑡) is a binary variable used to record prior debt 

obligations. Whether or not to lend is a problem of binary categorisation. A sigmoid 

function governs the lender’s decision-making process. Combining the relationship and 

size scores determines a borrower’s total score. The overall score is determined by 

the formula: 

 

 , , ,( ) ( ) (1 ) ( )T S R

i j i j i jS t S t S t =  − −      (4) 

 

where 𝑆𝑖,𝑗
𝑇 (𝑡) is the total score that bank 𝑖 assigns to bank 𝑗 for period 𝑡. The total score 

is a weighted average of the relationship and size scores, with 𝜔 a weighting 

parameter. The probability of the lender extending credit to the borrower is determined 

by (5), derived from a sigmoid function and based on the borrower’s overall score: 
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P S t
S t 
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where 𝑃[𝑆𝑖,𝑗
𝑇 (𝑡)] is the probability of bank 𝑖 lending to bank 𝑗, which depends on the 

parameters 𝛼 and 𝛽 , which control the intercept and slope of the sigmoid function 

respectively. The cut-off threshold for the probability is set at 0.5, which means bank 𝑖 

will only lend to bank 𝑗 if 𝑃[𝑆𝑖,𝑗
𝑇 (𝑡)] ≥ 0.5. 

 

4.1.3 Updating financials 

Each bank will have engaged in one interbank transaction or more with its 

counterparties once all banks’ lending and borrowing processes have been completed, 

except for a few isolated banks that do not have interbank lending or borrowing 

balances. When assembling an interbank lending network, we obtain a complete list 

of all the transactions that could occur along its edges. Next, the total amount of 

interbank lending and borrowing for all banks is entered to update the stylised balance 

sheet’s financial items for the same period. Total assets, liabilities and equity are 

derived from empirical data, as are external assets and external liabilities. Finally, the 
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updated balance sheet and the interbank network serve as inputs to settle outstanding 

payments for the following period. 

 

4.1.4 Parameter tuning  

The purpose of the ABM is to redistribute the interbank connections determined by 

each bank’s interbank lending and borrowing ratios. The model is therefore sensitive 

to the setting of parameters, including 𝜔, 𝛼 and 𝛽. 𝜔 is the weight for adjusting the 

relationship score and size score in determining the total score. 𝛼 and 𝛽 control the 

intercept and slope, respectively, of the sigmoid function in determining a bank’s 

lending decision. Similar to the mean square error, the objective of parameter turning 

is to minimise the simulation error ∅, which is defined as follows: 
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where 
ˆ

iL
 and 

ˆ
iA

are the simulated interbank liability and asset for bank 𝑖 . The 

combination of 𝛼 = 1 and 𝛽 = −1 gives a probability of lending of 0.5 when the total 

score is zero. To minimise 𝜙, we use a grid search method to identify the optimal 

parameters by varying 𝛼  between [0.1, 1.9], 𝛽  between [-1.9, -0.1] and 𝜔  between 

[0.05, 0.95], with a step size of 0.01 for each parameter. As a result, the optimal 

parameters are achieved with 𝛼 = 1.11 , 𝛽 = −0.58  and 𝜔 = 0.68  and with the 

simulation error 𝜙 = 0.003 . The parameter 𝜔 = 0.68  means that, when making a 

lending decision, the bank evaluates the borrower with a total score by placing more 

weight on the size (0.68) and less weight on the relationship (0.32). In contrast, the 

parameters 𝛼 = 1.11 and 𝛽 = −0.58 specify the sigmoid function wherein a minimum 

total score of 0.185 is required to get a probability of lending equal to or greater than 

0.5. 

 

After determining the optimal parameters, the randomness of the model must be 

managed. As described in Section 4.1.2, because the transmission of contagion 

depends on the structure of the network, the random sequence in which lenders and 

borrowers settle new debts could alter this network structure. We thus run 100 rounds 
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of simulations for the ABM to produce 100 networks, and we then draw conclusions 

based on the average performance of these networks to obtain a reliable result. 

 

4.2 The DebtRank model 

Nodes in a financial network cannot accurately estimate the actual risks associated 

with lending to other nodes in the network unless they have complete information on 

the riskiness of each other node. These risks can be evaluated by using network 

metrics such as the DebtRank model of the interbank liability network (Bardoscia et al. 

2015).  

 

DebtRank can be illustrated by denoting 𝐴𝑖
𝑒(𝑡) as external assets, 𝐿𝑖

𝑒(𝑡) as external 

liabilities, 𝐴𝑖𝑗(𝑡)  as the interbank assets of bank 𝑖  from bank 𝑗 , and 𝐿𝑖𝑗(𝑡)  as the 

interbank liabilities of bank 𝑖 to bank 𝑗. Thus 𝐴𝑖(𝑡) and 𝐿𝑖(𝑡) are the interbank assets 

and interbank liabilities of bank 𝑖 at time 𝑡. After a shock is applied to the system, 

DebtRank will generate a discrete-time map detailing how each bank’s equity has 

evolved. Let 𝐸𝑖(𝑡) denote the equities of bank 𝑖 at time 𝑡. DebtRank defines a bank as 

having defaulted if 𝐸𝑖 ≤ 0, where a bank’s liabilities exceed its assets. Two states are 

possible in the DebtRank dynamic for banks: active and inactive. Let ℝ(𝑡) denote the 

set of active banks at time 𝑡, as follows:  

 

 ℝ(𝑡) = {𝑖: 𝐸𝑖(𝑡) > 0}     (7) 

 

The model considers a mark-to-market evaluation for interbank assets, while liabilities 

keep their face value. When bank 𝑗 defaults, it defaults to all its interbank liabilities, 

meaning its creditors will not recover its lending to bank 𝑗, so 𝐴𝑖𝑗 = 0. Bank 𝑖’s equities 

at time 𝑡 thus read as follows: 
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The relative changes in the equity of borrowers are reflected in equal relative changes 

in the interbank assets of the lenders at the next time step: 

 



 
19 

 

( )
( ) if ( 1)

( 1)( 1)

( ) 0 if ( 1)

j

ij

jij

ij

E t
A t j t

E tA t

A t j t


 −

−+ = 
 =  −

R

R
   (9) 

 

where the case 𝑗 ∉ ℝ(𝑡 − 1) ensures that when bank 𝑗 defaults, the corresponding 

interbank assets 𝐴𝑖𝑗 of its creditors will remain zero for the rest of the evolution. By 

iterating the balance sheet identity (8) and shock propagation mechanism (9), the 

contagion dynamics can be cast in terms of relative cumulative equity loss of bank 𝑖: 

ℎ𝑖(𝑡) = (𝐸𝑖(0) − 𝐸𝑖(𝑡))/𝐸𝑖(0):  

 

 1

( 1) min 1, ( ) ( ) ( ) ( 1)
N

i i ij j j

j

h t h t t h t h t
=

 
 + = +  + − −  

 


  (10) 

 

where the interbank leverage matrix ∧ is defined as 
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We measure the response of each bank to the shock in terms of its contribution 𝐻𝑖(𝑡) 

to the relative equity loss of the system:  

 

 

(0) ( ) (0)
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(0) (0)
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−
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Following Bardoscia et al. (2015), the relative equity loss of the system when bank 𝑖 is 

shocked is used to measure the importance of bank 𝑖, namely DebtRank Impact (DI). 

Similarly, we estimate the vulnerability of bank 𝑖 by the average relative equity loss of 

bank 𝑖 due to a shock on other banks, namely DebtRank Vulnerability (DV).  

 

4.3 ∆𝑪𝒐𝑽𝒂𝑹 for systemic risk measurement 

For the robustness check of our measure on the bank’s importance (DI), we use 

another well-known measure, ∆𝐶𝑜𝑉𝑎𝑅. In our case it can only be applied to listed 
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banks, the D-SIBs. As our dataset contains 168 periods, we can make a time series 

comparison between two measures for each D-SIB.  

 

The systemic risk measure of ∆𝐶𝑜𝑉𝑎𝑅 by Adrian and Brunnermeier (2016) is based on 

value at risk, denoted 𝑉𝑎𝑅. 𝑉𝑎𝑅𝑞
𝑖  is the worst loss over a target horizon that will not be 

exceeded with a given level of confidence 1 − 𝑞. Statistically, the 𝑉𝑎𝑅𝑞
𝑖  defined for a 

confidence level 1 − 𝑞 corresponds to the 𝑞-quantile of the projected distribution of 

gains and losses over the target horizon (Bernal, Gnabo and Guilmin 2014). The 𝑉𝑎𝑅𝑞
𝑖  

of bank 𝑖, with tail level 𝑞, is defined as:  

 

 
Pr( )i i

qR VaR q =
     (13) 

 

where 𝑅𝑖 is the (return or) loss of bank 𝑖 for which the 𝑉𝑎𝑅𝑞
𝑖  is defined.  

 

𝐶𝑜𝑉𝑎𝑅𝑞
𝑠|𝑖

 is the 𝑉𝑎𝑅𝑞
𝑠 of the financial system conditional on an event 𝐶(𝑅𝑖) affecting a 

bank 𝑖.This event is materialised when the return for this bank (𝑅𝑖) is equal to its 𝑉𝑎𝑅 

for a 𝑞𝑡ℎ quantile of the conditional probability distribution of returns of 𝑠: 

 

 
| ( )Pr( | ( ) )

is i s C R

qR C R CoVaR q =
    (14) 

 

∆𝐶𝑜𝑉𝑎𝑅 is defined as the difference between the 𝐶𝑜𝑉𝑎𝑅 of the financial system 𝑠 when 

a given bank 𝑖 is in distress – that is, when it reaches an adverse level of 𝑉𝑎𝑅 (e.g. 

5%) – and the 𝐶𝑜𝑉𝑎𝑅 of the same financial system conditional on the normal state of 

the same bank, that is, when bank 𝑖 is at its median state (i.e. 50%): 
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   (15) 

 

This measure captures the change in 𝐶𝑜𝑉𝑎𝑅 when the conditioning event is shifted 

from the median return of bank 𝑖 to the adverse 𝑉𝑎𝑅𝑞
𝑠.  

 

Here we follow a factor-based quantile regression method to estimate ∆𝐶𝑜𝑉𝑎𝑅 (Bernal 

et al. 2014, Adrian and Brunnermeier 2016, and Bianchi and Sorrentino 2020). This 
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method captures time variation in the joint distribution of 𝑅𝑠  and 𝑅𝑖 , and estimates 

𝑉𝑎𝑅𝑠 and 𝐶𝑜𝑉𝑎𝑅𝑠 as a function of state variables, allowing us to model the evolution 

of the joint distributions over time. The method indicates time-varying ( )i

qVaR t  and 

( )i

qCoVaR t  and estimates the time variation conditional on a vector of lagged state 

variables ( 1)M t − . To match our study, we estimate the quantile regression on monthly 

data: 

 

 ( ) ( 1) ( )i i i i

q q qR t d M t t= +  − + ε     (16) 

 

where 
i

qd  and 
i

q  are the coefficients, ( )i

q tε  is the error term, and 
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where 
|s i

qd , 
|s i

q  and 
|s i

q are the respective coefficients and 
| ( )s i

q tε  is the estimation 

error term. We then use the predicted values from these regressions to obtain  
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and 
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Finally, we compute ( )i

qCoVaR t . For each bank:  

 

 50%( ) ( ) ( )i i i

q qCoVaR t CoVaR t CoVaR t = −
  (20) 

 

5. Results 

Section 5.1 validates the ABM network formation from a comparison of the target 

interbank lending-borrowing ratio between the model and the empirical data and from 

a comparison of network density. Based on the ABM network, the interbank contagion 

results using DebtRank are presented in Section 5.2 and are followed by a robustness 

check using ∆𝐶𝑜𝑉𝑎𝑅 in Section 5.3. Section 5.4 explores the determinants for both DI 
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and DV using a panel data analysis, and a conclusion is drawn according to the 

findings.  

 

5.1 Validation of ABM network formation 

ABM aims to redistribute each bank’s interbank lending and borrowing with 

counterparties based on the target ratios. Thus, one way to validate the model is to 

compare the interbank lending-borrowing ratios between the simulated and the 

empirical data. The comparison (Figure 4) is based on the average result of the 100 

simulated networks. The empirical and simulated ratios for interbank lending (in 

Panel (A)) and interbank borrowing (in Panel (B)) for each bank indicate the low 

simulation error of the ABM.  

 

Figure 4: Comparison between empirical and simulated interbank lending and borrowing ratios  
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Note: The simulated results are based on the average of 100 simulations. The comparison between the empirical 

and simulated ratios indicates a low simulation error. 

 

Figure 5 compares the network generated by ME and ABM. The initial network 

generated using ME has a high density of 0.757, as shown in Panel (A). Higher density 

implies that banks generally maintain more borrowing and lending relationships with 

counterparties. The density of 0.757 means that each bank maintains an average of 

34.8 relationships (including lending and borrowing) with 24 banks. This seems 

unrealistic, as it is costly to maintain too many relationships (Liu et al. 2020). As shown 

in Panel (B), our ABM network has a density of only 0.139. This density corresponds 

to the total degree of 6.4, which implies that each bank maintains an average of three 

borrowing and three lending relationships. This is considered more realistic in practice 

for a banking system with only 24 banks.  
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Figure 5: Networks by ME and ABM  

Panel (A): ME network

 

Panel (B): ABM network

 

Note: Panel (A) shows the initial network generated by ME, and the network density =0.757, while Panel (B) shows 

the ABM network for the final period, density =0.139. 

 

5.2 Contagion results with DebtRank 

Our monthly balance sheet data allow us to perform a time-varying analysis of the 

banks’ systemic risk. We use the first period of the balance sheet (January 2008) to 

estimate an initial network by ME and subsequently generate 167 monthly ABM 

networks from February 2008 to December 2021. We repeat this procedure 100 times 
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to draw a conclusion based on the average results. Figure 6 depicts an overview of the 

systemic risk in the banking sector by the monthly aggregate DI (ADI), 𝐴𝐷𝐼𝑡 = ∑ 𝐷𝐼𝑖,𝑡
𝑛
𝑖 . 

In general, three upsurges can be identified: between 2008 and 2009, between 2014 

and 2016, and in 2020.  

 

Figure 6: Monthly ADI from 2008 to 2021  

 

Note: 𝑨𝑫𝑰𝒕 = ∑ 𝑫𝑰𝒊,𝒕
𝒏
𝒊 . The results show upsurges in 2008–09, 2014–2016, and 2020. 

 

The first upsurge took place between 2008 and 2009, which coincided with the global 

financial crisis. Although the South African banking system remained relatively stable 

during the GFC, there was an inevitable dip in commercial banks’ profitability amid 

rising bad debts, curtailed credit extensions and a progressive decline in domestic 

demands (Chatterjee and Sing 2021). The second upsurge occurred in 2014–2016, 

when a number of significant events negatively affected the market. In August 2014, 

African Bank collapsed and was placed under curatorship. Its failure shocked the 

market and introduced significant systemic risk to the financial system (Sanderson, 

Maré and De Jongh 2017). In December 2015, the Minister of Finance was 

unexpectedly and controversially replaced, causing the local financial market to react 

negatively, significant currency depreciation (Walters et al. 2018) and significant losses 

in both equity and bond markets (Chatterjee and Sing 2021). In 2016, South Africa was 

beset by several negative factors, including currency depreciation, a weak economic 

outlook and an imminent credit review by Standard & Poor’s to decide whether to 

downgrade South Africa’s sovereign rating to junk status (Walters et al. 2018). The 

third upsurge occurred in early 2020 as a result of the COVID-19 pandemic, which 

caused significant turbulence in global financial markets.  

 

Figure 7 provides an overview of the position of each bank in terms of DI and DV, with 

the size of the dots proportional to the size of the banks. Panel (A) shows a high-level 

overview of the observed period, with DI and DV based on the average result of 
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167 periods. Panel (B) shows a snapshot as of December 2021. Three observations 

can be summarised. First, the values for DI and DV in Panel (A) are generally higher 

than those in Panel (B) due to the upsurges during the period. Second, five D-SIBs 

(excluding Capitec) occupy the high-impact area in both panels. Third, it can be 

inferred that a failure of any of these banks could cause significant damage to the 

system, leading to system-wide equity loss of between 40% and 60%, as shown in 

Panel (A), which may imply that larger banks are more impactful. 

 

In terms of vulnerability, both panels show that D-SIBs and some smaller banks are in 

the low-vulnerability area, which suggests that a bank’s size does not affect its 

vulnerability. Despite being a D-SIB, Capitec Bank’s DI deviates from the other five D-

SIBs. Capitec is located at the medium level in Panel (A) and at the lower level in Panel 

(B), suggesting it is not as systemically important as the other five D-SIBs. Chatterjee 

and Sing (2021) similarly conclude that Capitec has the lowest systemic importance 

based on other systemic risk measures (such as ∆𝐶𝑜𝑉𝑎𝑅 , SRISK and marginal 

expected shortfall). It is therefore proposed that Capitec Bank be treated as an 

exception from the list of D-SIBs. 

 

Figure 7: DebtRank Impact (DI) and DebtRank Vulnerability (DV) 

Panel (A): DebtRank based on average result 
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Panel (B): DebtRank based on December 2021 

  

Note: In Panel (A), the values for DI and DV are calculated on the average result of 167 periods between February 

2008 and December 2021. Panel (B) shows a snapshot as of December 2021. Node size is based on total assets 

using the min-max scaling method.  

 

5.3 Robustness check 

As mentioned in the literature review, before analysing the factors that explain DI and 

DV, it is necessary to conduct a robustness check on the outcome of the variables 

generated from the DebtRank algorithm. To validate DI as an effective measure of a 

bank’s systemic importance, we compare it with other measures that are based on 

different approaches, such as ∆𝐶𝑜𝑉𝑎𝑅, which is based on market data.  

 

We use the quantile regression method to estimate the ∆𝐶𝑜𝑉𝑎𝑅. The state variables 

include the change in the three-month Treasury bill, yield curve slope, volatility and the 

equity market return (Manguzvane and Mwamba 2019; Chatterjee and Sing 2021). 

The change in the three-month Treasury bill is the difference between the three-month 

Treasury bill rate at time 𝑡 and 𝑡 − 1. The yield curve represents the changes in interest 

rates over time, specifically from the 10-year government bond and three-month 

Treasury bill rates. Market volatility is measured by the JSE SA Volatility Index 

(SAVIX). Lastly, the JSE Top 40 Index measures equity return. All variables are 

monthly to align with the time interval of our analysis. Figure 8 depicts the state 
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variables’ time series, and Table 2 summarises statistics. All variables are confirmed 

stationary using the Augmented Dickey-Fuller test.  

 

Figure 8: State variable movements used to conduct the ∆𝑪𝒐𝑽𝒂𝑹 

SAVIX 

 

Change in the slope of the yield curve 

 

Change in three-month T-bill 

 

JSE 40 return 

 

Note: Top left panel: SAVIX: JSE SA Volatility Index. Top right panel: Change in the slope of the yield curve: the 

difference between the 10-year government bond rate and the three-month T-bill rate. Bottom left panel: Change in 

three-month T-bill: the difference between the three-month T-bill rate at time 𝑡 and 𝑡 − 1. Bottom right panel: JSE 

40 return: the return of the JSE Top 40 Index.  

 

Table 2: Description of state variables for ∆CoVaR 

 Mean Std. dev. Min. Max. 

Yield curve slope 0.0017 0.0485 -0.1436 0.2050 

T-bill change -0.0004 0.0027 -0.0141 0.0115 

SAVIX 21.5680 6.4225 12.7000 52.1400 

JSE 40 return 0.0070 0.0474 -0.1491 0.1377 

Note: This table reports the descriptive statistics for the state variables estimating the ∆CoVaR. The yield curve 

slope indicates the change in slope of the yield curve represented by the 10-year government bond rate and the 

three-month T-bill rate of South Africa. The T-bill change is the difference between the three-month T-bill rate at 

time 𝑡 and 𝑡 − 1. The market volatility is measured by the SAVIX. JSE 40 return is the return for the JSE Top 40 

Index for 𝑁 = 167 observations.  

Source: Bloomberg 

 

Figure 9 shows the time-varying ∆𝐶𝑜𝑉𝑎𝑅s for large banks. The values are presented 

in absolute values to be consistent with the direction of DI. This indicates that the 

greater the ∆𝐶𝑜𝑉𝑎𝑅, the greater the level of systemic risk. As highlighted, two time 
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periods are associated with significant levels of systemic risk: the fourth quarter of 

2008, which corresponds to the onset of the GFC, and the first quarter of 2020, which 

corresponds to the onset of the COVID-19 pandemic.  

 

Figure 9: ∆CoVaR of the large banks from 2008 to 2021  

 

Note: The values for ∆CoVaR are positive to be consistent with our DI measure – the greater the value of ∆CoVaR, 

the higher the systemic risk. Two periods with higher systemic risks are also shown: the outbreak of the global 

financial crisis in 2008 and the outbreak of the COVID-19 pandemic in 2020.  

 

In comparing the DI with ∆CoVaR for each large bank, Figure 10 shows the moving 

trends of these two measures and their respective correlations. These two measures 

are significantly correlated for all the large banks, with correlation coefficients ranging 

from 0.49 to 0.59. Although the two measures are based on different approaches 

(∆𝐶𝑜𝑉𝑎𝑅 is based on market data and our framework is based on the balance sheet), 

both capture the banks’ risk characteristics. 
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Figure 10: Comparison of DI and ∆𝑪𝒐𝑽𝒂𝑹 for six large banks from February 2008 to December 

2021  

Standard Bank SA  

 

FirstRand Bank  

 

Absa Bank  

 

Nedbank  

 

Investec Bank  

 

Capitec Bank 

 

Note: The correlations for the DI and ∆𝐶𝑜𝑉𝑎𝑅 for each bank are all significant at 1% (coefficients range from 0.49 

to 0.59). 

 

5.4 Panel data analysis for the importance and vulnerability of banks 

To formulate relevant macroprudential policies for financial stability, it is important to 

identify the factors that contribute to a bank’s importance and vulnerability. To this end, 

we conduct a panel data analysis using banks’ balance sheet data to identify the 

underlying factors that impact these measures.  

 

Our dataset has a time series of 167 periods (𝑡 = 167) for 24 banks (𝑛 = 24), which 

makes it possible to conduct a panel data analysis to investigate the characteristics 
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that explain a bank’s importance (DI) and vulnerability (DV). We select the explanatory 

factors according to Glasserman and Young (2015, 2016), Laeven, Ratnovski and 

Tong (2016), and Lin and Zhang (2022). Table 3 provides a description of the data 

(Annexure 2 provides a table for the key variables for the most recent period, 

December 2021). 

 

Table 3: Panel data description 

 Definition Mean Std. dev. Min. Max. 

DI Model 0.2646 0.2736 0.0000 0.9546 

DV Model 0.3384 0.2502 0.0000 0.9044 

Size Natural log of total assets 16.8230 2.1962 12.7176 21.2074 

Financial connectivity Interbank liabilities to total liabilities 0.1440 0.1968 -0.0005 0.9327 

External leverage Outside liabilities to equities 8.0261 3.9865 0.2990 29.7813 

Interbank lending ratio Interbank lending to total assets 0.2213 0.1569 0.0000 0.7010 

Capital ratio Equities to total assets 0.1217 0.0733 0.0266 0.4779 

Activity Loans to total assets 0.4848 0.2147 0.0000 0.9436 

Funding Retail deposits to total assets 0.2452 0.2736 0.0000 0.9157 

Note: This table reports the description of the panel data for 24 banks (𝑛 = 24) in South Africa from February 2008 

to December 2021 (𝑡 = 167). There are 4 008 observations (𝑁 = 4 008) for each bank. DI and DV are obtained 

from our model described in this paper. Other variables are derived from the balance sheets of the banks. 

 

We continue the analysis with a fixed-effects panel regression based on the test 

results. The results of the tests to determine the use of the fixed-effects model are 

provided in Annexure 3. Our models are as follows: 

 

 , , ,

I I I

i t i t i i tDI X u e= + +
     (21) 

 

and  

 

 , , ,

V V V

i t i t i i tDV X u e= + +
     (22) 

 

where 𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇. 𝐷𝐼𝑖,𝑡 and 𝐷𝑉𝑖,𝑡 are the DebtRank Impact and DebtRank 

Vulnerability, respectively, for bank 𝑖 at time 𝑡. 𝑋𝑖,𝑡 are the K explanatory variables. 𝛽 

represents the K regression coefficients. 𝑢𝑖 is the panel-specific, time-invariant fixed 

effect. 𝑒𝑖,𝑡  is the idiosyncratic error term. The superscripts for 𝛽, 𝑢  and 𝑒  are to 

distinguish them between DI (𝐼) and DV (𝑉) models. 
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We conduct the analysis using the ordinary least square (OLS) as a basis model for 

comparison; the adjusted 𝑅2 is 0.2420 for DI and 0.4420 for DV (more detailed results 

can be found in Annexure 4). In contrast, our results with the fixed-effects model show 

the adjusted 𝑅2 is 0.5249 for DI and 0.7533 for DV. The improved results, relative to 

the OLS model, suggest that the fixed-effects model is important. The estimation 

results2 are summarised in Table  4.  

 

Table 4: Panel data regression estimation results 

 DI p-value DV p-value 

Size 0.0533*** <0.0001 -0.0013 0.1163 

Capital ratio 0.1698** 0.0180 -1.0357*** <0.0001 

Financial connectivity 0.2587*** <0.0001 -0.1511*** <0.0001 

External leverage 0.0061*** <0.0001 0.0024*** 0.0037 

Interbank lending ratio -0.1699*** <0.0001 0.8859*** <0.0001 

Activity 0.1213*** <0.0001 -0.0729*** <0.0001 

Liquidity -0.0642 0.3275 0.0778 0.0618 

Funding -0.0048 0.7987 -0.0881*** <0.0001 

𝐴𝑑𝑗 − 𝑅2 0.5249  0.7533  

***p-value < 1%, **p-value < 5% 

Note: This table reports the estimation result for the dependent variables of DI and DV based on the fixed-effects 

model. The coefficients and their p-values for respective regressors are reported. 

 

Size has a significantly positive impact on DI (0.0533) at the 1% level, whereas there 

is no statistical proof that size affects DV. While our findings align with the traditional 

wisdom that large banks are more systemically important, they also suggest that large 

banks are not necessarily more vulnerable. Similar results in the Chinese interbank 

market (Lin and Zhang 2022) show no significant correlation between size and 

vulnerability.  

 

Bank capital acts as a loss-absorbing buffer. Regulators use a bank’s capital ratio as 

a key measure to assess the bank’s financial strength: banks with high capital ratios 

are likely to be more resilient to shocks and therefore less vulnerable. This is confirmed 

by our results, which show that capital ratio has a substantially negative impact on DV 

 

2  To conduct the multicollinearity test, we compute the variance inflation factor for every regressor. 
The results indicate that there is multicollinearity between the selected variables, namely size, 
activity and funding. We execute the fixed-effects model excluding size, activity and funding. The 
results indicate that the direction and significance of the coefficients for other regressors remain 

unchanged. The 𝑅2 for DI is 0.3149 and for DV is 0.7361. Multicollinearity only introduces type II 
errors, so it has no effect on our findings about the explanatory significance of the regressors.  
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(-1.0357), suggesting that increasing the capital ratio can substantially reduce 

vulnerability. Our results also show that an increase in capital ratio is associated with 

a small but significant (p-value < 5%) increase in DI (0.1698). There are multiple 

possible reasons for this complex relationship, but one reason may be that banks with 

higher capital ratios are more trusted and thus take on a greater role within the financial 

network. 

 

Financial connectivity, also known as the interbank borrowing ratio, measures the 

extent to which banks are connected through borrowing. A higher interbank borrowing 

ratio indicates that banks are more interconnected. A shock to one bank is more likely 

to propagate to other banks, thus making the bank more important. Our results for 

financial connectivity add nuance to the finding, which has a significantly positive 

impact on DI (0.2587). Determining whether an increase in connectivity would cause a 

decrease or increase in the bank’s vulnerability is not straightforward. 

  

From a diversification standpoint, increasing connectivity allows risk-sharing among 

banks, which can help banks be less susceptible to failure when subject to a shock. 

This is supported by our results showing that financial connectivity negatively impacts 

DV (-0.1511). However, Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) argue that 

greater connectivity could amplify (or dampen) the contagion risk when the magnitude 

of the shock is above (or below) a certain threshold. A similar result is found in Nier et 

al. (2007), where the authors conclude that increasing connectivity increases shock 

transmission and absorption, with the first effect dominating at low connectivity and the 

second at higher connectivity. These findings suggest that policymakers cannot simply 

rely on increasing financial connectivity to reduce a bank’s vulnerability. Other factors 

must also be considered, such as the shock’s size and the bank’s connectivity level.  

 

The interbank lending ratio has a small negative impact on DI (-0.1699), but its effect 

on DV (0.8859) is rather substantial. A greater interbank lending ratio indicates that a 

bank is more exposed to the interbank market, meaning it is vulnerable to failure if its 

interbank borrowers fail to meet their obligations. It is thus more vulnerable to shocks 

from other banks. The impact of the interbank lending ratio on DV is almost 10 times 

that on DI. This provides valuable insight for regulators, who can use this information 

to identify which banks might need more stringent oversight or regulatory intervention. 
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It is therefore suggested that regulators not focus solely on a bank’s DI, as such a bank 

may receive less attention even when its vulnerability score has significantly increased.  

 

External leverage has a significant positive impact on DI (0.0061) and DV (0.0024), 

because higher leveraged banks are more prone to failure and are thus more 

vulnerable (Glasserman and Young 2015), and their failure has systemic 

consequences. However, the magnitude of both measures is economically small.  

 

The market-based lending activity is significantly positive for DI (0.1213) and negative 

for DV (-0.0729), which suggests that increasing market-based lending activities could 

increase a bank’s importance and reduce its vulnerability in the interbank market.  

 

Lastly, our results do not indicate a significant impact of funding on DI; Laeven, 

Ratnovski and Tong (2016) had similar results using ∆𝐶𝑜𝑉𝑎𝑅 or SRISK. However, 

funding negatively impacts (-0.0881) at 1% confidence level. This result is comparable 

to Havemann’s (2021) observation that failing banks in South Africa between 2002 and 

2003 were typically characterised by a high degree of short-term wholesale funding 

withdrawal. Havemann also concludes that the run of wholesale funding as opposed 

to retail funding caused the failure of small banks. 

 

In summary, our analysis reveals that a bank is more influential if it is more connected 

to the financial system (0.2587), better capitalised (0.1698), has more market-based 

lending activities (0.1213) and is larger in size (0.0533). These results align with the 

existing understanding of the bank’s importance (Glasserman and Young 2015; Lin 

and Zhang 2022). However, more interesting results were found regarding the bank’s 

vulnerability. Our results show a bank’s vulnerability is not about its size but its capital 

(-1.0357) and interbank lending (0.8859). Increasing the capital ratio substantially 

reduces a bank’s vulnerability, but excessive interbank lending will considerably 

undermine the effect of capital ratio requirements and make a bank more vulnerable.  

 

As the interbank lending ratio and capital ratio have an offsetting effect on the 

vulnerability measure, we introduce the interbank-lending-to-equity (ILE) multiple to 

examine their joint effect. This is defined as: 
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 Interbank borrowing ratio Inverse of capital ratio

( ) ( ) ( )
( )

( ) ( ) ( )

i i i
i

i i i

A t A t TA t
ILE t

E t TA t E t
= = 

   (23) 

 

where ( )iTA t  is the total assets of bank 𝑖 at time 𝑡. ILE can be regarded as a bank’s 

interbank lending per unit of capital. A higher ILE can be interpreted as more 

aggressive interbank lending activity in relation to its capital. Figure 11 plots the 

relationship between ILE and DV. The left panel shows an overview of the relationship 

based on the average of 167 periods. The right panel shows the relationship for the 

most recent result as of December 2021. In both panels, two measures are positively 

and highly correlated, with a coefficient of 0.88 for the left panel and 0.93 for the right 

panel. In other words, banks with a higher ILE are more vulnerable. Figure 11 also 

shows that D-SIBs, represented by the large dots, typically have lower vulnerability. 

This is direct evidence that focusing only on D-SIBs is insufficient to assess South 

Africa’s financial stability. 

 

Figure 11: ILE ratio vs DV 

Panel (A): Relationship-based on average result  
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Panel (B): Relationship as of December 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Panel (A) shows the overview of the relationship for the observed period. Both measures are calculated based 

on their respective average of 167 periods from February 2008 to December 2021. Panel (B) is based on December 

2021. Two measures are correlated, with a coefficient of 0.88 for Panel (A) and 0.93 for Panel (B), p-value < 0.0001 

for both panels. Node sizes are proportional to total assets.  

 

6. Conclusion 

This paper employed an ABM method with the DebtRank algorithm to examine 

contagion risks in the South African banking sector. The analysis is based on a unique 

dataset of 168 monthly balance sheets from 24 banks, including listed and unlisted 

ones. Our sample covers nearly 99% of the South African banking system. The 

systemic importance of a bank and its vulnerability can be determined using the DI and 

DV indicators, respectively. A panel data analysis on DI and DV was performed to 

investigate some explanatory factors.  

 

The main findings of the study are that a bank is more influential if it is more connected 

to the financial system, better capitalised, larger in size and has more market-based 

lending activities. Our findings also offer valuable insights into understanding a bank’s 

vulnerability. We did not find compelling evidence that a bank’s size contributes to its 

vulnerability, but our results show that increasing the bank’s capital ratio can 

substantially decrease its vulnerability. This effect is undermined if the bank has a 
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higher interbank lending ratio. Finally, our results reveal a strong and positive 

correlation between the interbank-lending-to-equity ratio and vulnerability. 

 

Our research provides a comprehensive risk analysis for both listed and unlisted banks 

in South Africa by assessing their systemic risks from the perspectives of importance 

and vulnerability. From a regulatory point of view, such an approach aligns with the 

risk-based supervision requirements for a more inclusive, risk-based and data-centric 

method.  

 

Our proposed approach has two limitations. The first relates to ABM, as we assume 

that a bank’s lending decision is based on an evaluation of its relationship with the 

borrowing bank and the borrower’s size. In practice, more factors should be 

considered, such as the cost, return, tenor and timing of lending. These factors could 

be added to improve the model. The second limitation is that our network only 

considers interbank lending and borrowing. More interbank transactions, such as over-

the-counter derivatives, security financing transactions and repurchase agreements, 

could affect the interbank market. All these areas could pave the way for future 

research. 
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Annexure 1: Bank failures in South Africa 

Table A1: Overview of bank failures in South Africa 

Bank 
Year of 

curatorship 
Reasons 

Alpha Bank 1990 Fraud 

Cape Investment Bank 1991 Fraud 

Pretoria Bank 1991 Bad management 

Alpha Bank 1993 Liquidated 

Sechold Bank 1994 Liquidity problems  

Prima Bank 1994 Liquidity problems  

African Bank 1995 Bad management and liquidity problems 

Community Mutual Bank 1996 Liquidity problems  

Islamic Bank 1997 Bad management  

FBC Fidelity Bank 1999 Bad management and liquidity problems 

Cashbank Mutual Bank 2001 Acquired by BOE Bank Limited 

TA Bank of South Africa Limited 2002 Bank run 

Merrill Lynch Capital Markets Bank 

Limited 
2002 Bank run 

Cadiz Investment Bank Limited 2002 Bank run 

FirstCorp Merchant Bank Limited 2002 Bank run 

PSG Investment Bank Limited 2002 Bank run 

Regal Treasury Bank 2002 Improper financial statements; bank run  

New Republic Bank 2002 Bad management and liquidity problems 

Saambou Bank 2002 Bad management and liquidity problems 

BOE Bank Limited 2003 
Assets and liabilities transferred to 

Nedbank Ltd 

Internationale Nederlanden Bank 

NV 
2003 Bank run 

African Bank 2014 Liquidity problems  

VBS Mutual Bank 2018 Bad management and liquidity problems 

Note: Small and medium-sized banks account for most bank failures.  

Source: SARB 
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Annexure 2: Key data for the banks’ characteristics 

Table A2: Key data for the banks’ characteristics based on December 2021 results  

No. Bank DI DV ILR FC CAR Size EL Liquidity Activity Funding 

1 Absa Bank Ltd 0.4861 0.0527 0.0588 0.1200 0.0737 21.0255 11.0676 0.0259 0.6838 0.2417 

2 
Standard Bank SA 

Ltd 
0.3734 0.0736 0.0943 0.0774 0.0721 21.2074 11.8696 0.0231 0.6090 0.1897 

3 FirstRand Ltd 0.2883 0.0527 0.0546 0.0350 0.0753 21.0847 11.8487 0.0250 0.5783 0.2376 

4 Nedbank Ltd 0.2793 0.0485 0.0488 0.0474 0.0773 20.8394 11.3722 0.0244 0.6599 0.2118 

5 Investec Bank Ltd 0.1294 0.0892 0.0920 0.0443 0.0820 20.0449 10.6983 0.0223 0.6020 0.2178 

6 Bank of China Ltd 0.0859 0.0411 0.1328 0.5497 0.2464 17.5063 1.3771 0.0197 0.4668 0.0080 

7 
China Construction 

Bank Corporation 
0.0598 0.2008 0.4769 0.4057 0.1385 17.5479 3.6971 0.0416 0.2895 0.0016 

8 
JP Morgan Chase 

Bank 
0.0518 0.1400 0.3192 0.1392 0.2109 17.9935 3.2213 0.0051 0.1308 0.0000 

9 Deutsche Bank AG 0.0344 0.2387 0.2948 0.2623 0.0904 16.6747 7.4223 0.0076 0.0928 0.0000 

10 HSBC Bank PLC 0.0313 0.2608 0.3533 0.0770 0.0790 18.0701 10.7598 0.0469 0.2126 0.0000 

11 State Bank of India 0.0293 0.1506 0.6503 0.9244 0.2018 16.0665 0.2990 0.0136 0.3174 0.0322 

12 Citibank NA 0.0292 0.2037 0.3044 0.0567 0.1136 18.2619 7.3633 0.0318 0.2597 0.0000 

13 
Standard 

Chartered Bank 
0.0112 0.1697 0.2407 0.0380 0.1121 17.5839 7.6218 0.0187 0.2551 0.0000 

14 Access Bank 0.0097 0.1530 0.1866 0.3918 0.0790 15.3361 7.0917 0.0264 0.7065 0.3791 

15 Bank of Taiwan Ltd 0.0048 0.0915 0.4095 0.7984 0.2173 14.3800 0.7262 0.0087 0.2647 0.0377 

16 Bidvest Bank 0.0032 0.0868 0.2067 0.0405 0.2037 16.2281 3.7508 0.0585 0.3220 0.4008 

17 Capitec Bank 0.0025 0.0599 0.1195 0.0016 0.1814 18.9766 4.5040 0.0473 0.3866 0.7356 

18 HBZ Bank Ltd 0.0012 0.1875 0.2028 0.0143 0.0740 15.8837 12.3359 0.0156 0.3096 0.3688 

19 Sasfin Bank 0.0006 0.1067 0.1625 0.0036 0.1127 16.1372 7.8454 0.0367 0.4636 0.2047 

20 Grindrod Bank 0.0002 0.0415 0.0564 0.0021 0.1232 16.4347 7.1037 0.0246 0.6398 0.0624 

21 Habib Bank 0.0000 0.2267 0.4593 0.0054 0.0922 13.9185 9.7939 0.0332 0.3431 0.5659 

22 Ubank 0.0000 0.0408 0.0372 0.0000 0.0784 15.4863 11.7630 0.0471 0.0806 0.8673 

23 Ithala Bank Ltd 0.0000 0.1236 0.1839 0.0000 0.1236 14.9624 7.0936 0.0418 0.6374 0.5413 

24 Al Baraka Bank 0.0000 0.1766 0.2406 0.0000 0.0968 15.9675 9.3279 0.0297 0.7154 0.5002 

Note: The table is sorted in descending order by the DI. ILR: interbank lending ratio; FC: financial connectivity; CAR: 

capital ratio; Size: log total assets; EL: external leverage; Liquidity: cash to total assets; Activity: lending activity, 

measured by loan to total assets; Funding: retail deposit to total assets.  
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Annexure 3: Statistical tests for panel data analysis 

We first conduct a unit root test for the panel data using the Levin, Lin and Chu (2002) 

test. The results shown in Table A3 confirm the stationarity of the data. Then, following 

Siebenbrunner, Sigmund and Kerbl (2017), we perform various tests to determine an 

appropriate model for the panel data analysis. Table A4 summarises the test results. 

We first test the importance of individual effects through the Breusch-Pagan 

Lagrangian multiplier test (Breusch and Pagan 1980). The rejections of the Breusch-

Pagan test (p-value = <0.01 for both DI and DV) indicate that individual effects are 

important. We then use Honda (1985) and the standard F-test to compare the pooled 

model with the individual effects alternatives. The rejections of these tests again 

confirm the importance of individual effects for both DI and DV. Finally, the Hausman 

(2015) test is used to decide between fixed and random effects. The rejections of the 

Hausman test (p-value =< 0.01 for both DI and DV) indicate that the fixed-effects 

model is consistent.  

 

Table A3: Unit root test for panel data  

Variables z-score p-value Result 

DI -5.86 <0.01 Stationary 

DV -4.70 <0.01 Stationary 

Size -9.53 <0.01 Stationary 

Financial connectivity -8.35 <0.01 Stationary 

External leverage -5.44 <0.01 Stationary 

Interbank lending ratio -7.82 <0.01 Stationary 

Capital ratio -5.45 <0.01 Stationary 

Activity -7.40 <0.01 Stationary 

Funding -9.06 <0.01 Stationary 

Note: This table reports the unit root test based on the Levin, Lin & Chu test. The null hypothesis: the variable is 

non-stationary. The z-scores and p-values are reported. Based on the results, all variables are stationary. 
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Table A4: Statistical tests for panel data analysis 

  DI DV 

Null hypothesis Method Stats p-value Stats p-value 

Individual effect is not important 
Breusch-

Pagan 
4659.6 <0.01 25240 <0.01 

Individual effect is not important Honda 140.94 <0.01 144.89 <0.01 

Individual effect is not important F-test 157.67 <0.01 394.24 <0.01 

The preferred model is random effects – 

no significant correlation between the 

errors and the regressors 

Hausman 2565.4 <0.01 1580.8 <0.01 

Note: This table reports the testing results with different methods for the dependent variables DI and DV against 

the regressors. We test the importance of individual effect with the Breusch-Pagan, Honda test and standard F-

test; the results are significant at 1%, indicating the importance of the individual effect. In addition, the Hausman 

test result is significant, which rejects the null hypothesis and suggests that only the fixed-effects model is 

consistent. Number of entities: n = 24; number of periods: t = 167; number of observations: N = 4 008. 
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Annexure 4: Results of the OLS model 

Table A5: Panel data regression using the OLS model 

 DI p-value DV p-value 

Intercept -06775*** <0.0001 0.5152*** <0.0001 

Size 0.0193*** <0.0001 -0.0291*** <0.0001 

Capital ratio  1.4751 ** <0.0001  -0.0482 0.525 

Financial connectivity 0.5860*** <0.0001 -0.1046*** <0.0001 

External leverage 0.0444*** <0.0001 0.0329*** 0.0010 

Interbank lending ratio -0.3520*** <0.0001 0.7279*** <0.0001 

Activity 0.1679*** <0.0001 0.0097 0.624 

Liquidity 0.0518 0.402 0.1027 0.288 

Funding -0.0627 0.126 -0.1727*** <0.0001 

𝐴𝑑𝑗 − 𝑅2 0.242  0.441  

***p-value < 1%, **p-value < 5% 

Note：This table reports the estimation result for the dependent variables of DebtRank Impact (DI) and DebtRank 

Vulnerability (DV) based on the OLS model with clustered standard errors method.  
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