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Abstract

In this article we propose a dynamic factor framework for modeling and forecasting
financial and commodity term structures in a unified global setting. The novelty of our
approach is that it exploits a large set of information (i.e. data properties, time and forward
dimensions, and cross-country, market, sector and weather dimensions) summarized in a
set of heteroskedastic components that have a clear time series interpretation and that
can be modeled dynamically to generate forecasts in real-time. The approach is motivated
by evidence of rising financial integration, and interdependence between commodity and
asset markets. We employ a battery of in-sample and out-of-sample techniques to evaluate
our framework and concentrate on relevant statistical and economic performance measures.
To preview our results with practical implications, we find that our framework provides
significant in-sample information in terms of product specific factors and commonalities
driving commodity and financial markets. Moreover, the specification proposed for modeling
the dynamics of financial and commodity term structures generates accurate out-of-sample
interval and point forecasts and leads to variance reduction when hedging a portfolio made

up of spot and futures contracts.
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1 Introduction

Modeling and forecasting term structures in financial and commodity markets is very impor-
tant for industry practitioners and policy makers. Appropriate methods that approximate term
structures -and thus the expected future path of financial and commodity prices- allow prac-
titioners to take better decisions, for instance, with respect to optimal portfolio holdings and
dynamic hedging strategies. Monetary authorities also benefit from information embedded in
financial and commodities term structures: forecasts of the future evolution of exchange rates,
asset prices, and commodity prices, are important inputs used by central banks when setting
policy interest rates (Rigobon and Sack, 2002; Bernanke, 2008).

In this article we propose a dynamic factor framework for modeling and forecasting financial
and commodity variables in a unified global setting. The novelty of our approach is that it
exploits a large set of information at the daily frequency (i.e. data properties, time and forward
dimensions as well as cross-country, market, sector and weather dimensions) summarized in
a set of heteroskedastic components that have a time series interpretation and that can be
modeled dynamically to generate forecasts on real time. We employ a battery of in-sample
and out-of-sample techniques to evaluate our framework and we concentrate on statistical and
economic performance measures relevant for decision makers (e.g. porfolio managers, central
bankers).

Our study is motivated by the fact that, to the best of our knowledge, no research has
been done so far that brings together a unified framework for modeling and forecasting financial
and commodity futures at the international level. Such a unified approach may be increasingly
important due to the degree of financial spillovers and interdependence, across borders, and
between asset classes (e.g., IMF (2016)). Commodity prices affect the demand for currencies
and equities of commodity exporters (e.g., Australia, Canada, Chile, Norway, South Africa);
and commodity currencies have been shown to help forecast commodity prices (Chen et al.,
2010). Rising commodity prices also raise the terms-of-trade and growth rates of commodity-
rich economies; the associated increase in aggregate demand induces monetary policy tightening
under inflation-targeting regimes, raising bond market yields. Moreover, international financial

integration has contributed to an erosion of monetary policy independence, and strengthened the



responsiveness of bond yields (particularly along the long end of the yield curve, in advanced and
emerging economies) to the global financial cycle, which is largely driven by monetary conditions
in the US (Rey, 2014; Obstfeld, 2015). Last but not least, growth spillovers (e.g., from China)
cause a degree of international co-movement in rates of output growth, and short-term interest
rates.

One of the most popular term structure modeling benchmarks (albeit in the interest rate
literature) is the Nelson and Siegel (1987) model which decomposes the term structure of interest
rates into three factors, namely, the level, slope and curvature of the yield curve. Diebold
et al. (2008) and Diebold and Li (2006) have extended the NS approach to incorporate other
global factors and time-series structures and have demonstrated its good forecasting capabilities
and its applicability for macroeconomic analysis (Diebold et al., 2006). Recent work has also
highlighted the good fit of the NS structure for commodity markets (Karstanje et al., 2015)
vis-a-vis other important benchmarks in the commodities pricing literature such as the seminal
work by Schwartz (1997) and Schwartz and Smith (2000).

In general, factor models have shown to be a promising avenue for modeling futures and/or
yield curves and to explain the variation of the macroeconomy (Ang and Piazessi, 2003; Cochrane
and Piazessi, 2005, 2008). This is not surprising as term structures contain important informa-
tion along the time and forward dimensions which are difficult to account for with large scale
macro models. Nevertheless, research on term structures is still in its infancy, in particular
studies that account for both financial and commodity markets in a unified approach.

A handful of studies have recently put forward models for commodity products at the daily
frequency with ‘real world’ applications such as hedging and portfolio allocation (Boswijk et al.,
2015; Cavalier et al., 2015; Dolatabadi and Nielsen, 2015; Dolatabadi et al., 2015). What seems
to be a common finding is that accounting for fractional cointegration, fits well the data in-
sample and out-of-sample. Previous studies have also found evidence of fractional cointegration
in daily equity and exchange rate dynamics which imply a dissipation of shocks to equilib-
rium relations only at long horizons; thus hinting at the promising applicability of fractional
cointegrated models for forecasting with data at higher frequencies (de Truchis, 2013; Baillie

and Bollerslev, 1994). Moreover, as shown both empirically and theoretically in the behavioral



finance literature, regime-switching mechanisms can help explain the stylized features found
in financial data as well as adapt to structural breaks (Grauwe and Grimaldi, 2006; Huisman,
2009). However, to what extend the commonalities of financial and commodity markets can be
modeled via fractional cointegration dynamics as well as heteroskedasticity and regime-switching
features and their contribution to in-sample and out-of-sample information is, to the best of our
knowledge, not known. In this study we contribute to the rising literature on term structure
modeling by bridging commodities and financial markets in a unified framework that accounts
for important commonalities between these markets with realistic time-series mechanisms.

The specific contributions of our study are threefold. First, we extend the NS-type structure
to account for stochastic seasonalities which are important determinants of some commodity
markets (e.g., gas, gasoline, livestock, grains, etc). Moreover, we adapt the model to incorporate
global, market, sector and idiosyncratic components by introducing commonalities that account
for the effects of different countries, financial and commodity markets, alternative sectors (i.e.
oil and gas, metals, foreign exchange, equity, bonds) and idiosyncratic (i.e. product) specific
shocks. Bond market yields have a strong ‘global’ commonality; and commodities, exchange
rates, and equities are driven by demand and supply conditions which have a strong global
spectrum. Thus the importance of modeling all the markets and sectors considered here in a
unified setting.

Second, we propose a Regime-Switching Fractional Cointegrated VAR with Orthogonal
GARCH-in-mean errors (RSFCVAR-OGARCH-M) to model the dynamics of the global, market,
sector and seasonalities at the daily frequency. The latter specification accounts for many ‘styl-
ized facts’ of financial and commodity markets data at the daily frequency, namely, jumps, lep-
tokurtosis, (conditional) heteroskedasticity, fractional integration, amongst others (Lux, 2009;
Huisman, 2009). This is important as market practitioners deal daily with hedging decisions
of financial and commodity products and policy authorities study the daily effects of monetary
policy on term structures (e.g. yield curves) so that an appropriate framework should account
for characteristics in data dynamics as close as possible.

Third, we adopt a battery of in-sample and out-of-sample analyses that should allow prac-

titioners not only to extract useful and relevant information in real-time (e.g., variance term



structures, variance decompositions, macroeconomic mapping) but also to generate and evaluate
point and density forecasts of crucial financial and commodity variables.

The article is organized as follows. The next section describes the model. Section 3 discusses
the data and estimation approach and Section 4 the forecasting methodology. Section 5 and

Section 6 are devoted to discussing the results and our final remarks, respectively.

2 The model

The model is based on previous work by Nelson and Siegel (1987), Diebold et al. (2008), Diebold
and Li (2006), Karstanje et al. (2015) and Boswijk et al. (2015). We consider the NS structure
which is extended to incorporate seasonality components found in commodity markets such as

natural gas, gasoline, some grains and livestock, amongst others:

zit(T) = Lt + As(Nits T)sit + Ac(Nit, T)cir + Ap(Kir, cos(r,m), sin(7,n)) fir + (7). (1)

In the above expression z;(7) = In Z;(7) is used to denote the natural logarithm of the futures
price of product ¢ = 1,..., N at day t = 1,...,T and forward month 7 = 1,..., T, l; is the so-
called level factor, s; is the slope factor, ¢;; is the curvature factor, f;; is the seasonality factor
introduced for our framework and €;(7) is a ‘measurement error’.

The base loadings As(e), A(e), Af(e) quantify the loads of the slope, curvature and seasonal-
ity along the forward dimension. In principle, the latter loadings can take alternative analytical
forms, for instance, cublic spline loadings (Wold, 1974; Suits et al., 1977). In our context, the

base loadings are given by:

1 —e T

As(Nit, = — 2
( t 7’) NiiT ( )
1 — e MitT .
Ac(Nig, 7) = Tour e M, (3)
. Kit |1 — cos + sin
Af(Kit, cos(T,n),sin(7, 7)) el (2737? () ; (4)

where A is the so-called maturity parameter which quantifies the steepness and the shape of the



term structure. More precisely, the latter parameter can be interpreted as the ‘mean reversion’
rate of the slope and curvature factors. Moreover, we introduce the trigonometric funtions cos(-)
and sin(-) which allow us to incorporate a cyclical effect along the forward dimension of the
term structure with time-varying amplitude given by k;; and constant number of cycles with
respect to the forward month 7 given by n = 2r3~1.! To illustrate the latter functions, Figure 1
displays the behavior of the above base loadings for fixed (estimated) parameter values of \;
and k; for the products considered.

The commonalities of the level, slope, curvature and seasonality factors are modeled by

means of the following factor decomposition for each product ¢ at day t:

li = Li+ VgiLg,t + Vi Loyt + Vi Lt + €1t (5)
Sit = S+ '7?,7;8_9,7& + 'Y;Z‘Sm,t + WQiSn,t + €s,its (6)
cit = G+ ’Ygicg,t +7¢:Cmt + VeiCnyt + €ciits (7)
fi = fi+ V¥ iFut + 5 iFvt + i Fwt + €t (8)
where Ly, Sq.ts Cyt denote

the global components g = {global} ={glb}, the variables Ly, ¢, Sm.+,Cm denote the mar-
ket components m = {commodities, financial} = {com, fin} and L, ¢, Sy +, Cr+ denote the sec-
tor components n = {energy, metals, softs, grains, livestock, foreign exchange, bonds, equity} =
{ene, met, sof, gra, liv, forex, bon, eqt} of the level, slope and curvature factors, respectively.?
Moreover, Iy ¢, Fy ¢, Fiy ¢ denote the components driving the stochastic behavior of the season-
ality factors (e.g. weather). Finally, the components €, ;s for @ =1, s, ¢, f are the idiosyncratic
shocks of the level, slope, curvature and seasonality factors. In the above decomposition, we
assume that the components per factor (global, market, sector and idiosyncratic) are uncorre-
lated.

The dynamics of Lj;, Sj¢, Cj¢ for j = g,m,n and Fj; for j = u,v,w are modeled by

!We derive the seasonality specification in (4) by integrating the function f(7, s;) = K1, sin(nT) + ka,; cos(nT)
forward over [0, 7] and dividing the result by 7 to remain along the lines of the original NS derivation. To reduce
on the number of parameters to be estimated we assume k1,; = w1k, K2,; = wak; with w1 = wa = 1/2 a weighting
factor and k; the amplitude parameter.

2Global’ component is taken here as a common component amongst all products and country specific markets.



means of the following Regime-Switching Fractionally-Cointegrated VAR, process with Orthog-
onal GARCH-in-mean (FCVAR-OGARCH-M) innovations:

P
d; — . / d',r _b',r . . P d', P .
A X = B ATy X+ er,rtA sl Xt

j’bjﬂ"t
p=1
+ G Odiag(Hjt) + &, Y
St~ N(0, vat)’ "
H;; = BjE; [Uj,tU;,t’It—l] Bj = BjQ;Bj, -
Qe = (I3 —diag(0;) — diag(d;)) + diag(6;) © Qje—1 + diag(dy) © wjp—1uj, 1, (12)

where the vector X, is given by X ; = [L;+, Sj+, Cj,t}’ for j = g,m,nor Xj; = [Fyy, Foy, Fuyl
for j = f. In (9), A? is the fractional difference operator (ignoring regime-switching) and
T, = 1— Al is the fractional lag operator. Following Johansen and Nielsen (2012) a time series
is said to be fractional of order d, denoted X; € I(d), if A%X, is fractional of order zero, that is if
AYX, € I(d). A k-dimensional time series X; € I(d) is said to be fractionally cointegrated when
one or more linear combinations are fractional of a lower order, that is, when a k x r matrix g
exists such that 'X; € I(d —b) with b > 0. In addition, the matrices o and I" are the loadings
of equilibrium adjustment and of short-run dynamics, respectively. The reason for employing a
FCVAR structure here is that at higher frequency of the data, equilibrium relations may exhibit
long-memory and accounting for this feature can have important practical implications for, e.g.
hedging, as found in various studies (Brunetti and Gilbert, 2000; Dark, 2007; Coakley et al.,
2008). Although findings on fractional cointegration with daily data have not been categorized
as ‘stylized facts’ per se, they seem to be the rule rather than the exception when cointegration
is in fact present.

By introducing two regimes r; = 1,2, we assume that the FCVAR definitions apply but at
different degrees over time. We opt for a specification with regime-switching for three main
reasons. First, regime-switching mechanisms can account for structural and/or random breaks
in the data due to, for instance, changes in investor preferences, which can affect the (parameter)
stability of a particular model. Second, given that the proposed unified framework accounts

for different common components (global, market, sector and weather), we can expect a certain



degree of heterogeneity amongst the commonalities, so that a model with regime-switching
can potentially ‘absorb’ such heterogeneity. Third, regime switching features can approximate
jumps which are usually found in data of commodity and financial markets (see e.g., Lux (2009);
Huisman (2009)).

In the above specification, the covariance of the error process &;; is given by H;; for
j = g,m,n, f and is conditional on the information set Z;_;. We assume that the condi-
tional covariances H;; follow Orthogonal GARCH (OGARCH) processes. We also allow for the
variances in Hj; to have an effect on the conditional mean of X;; so that the coefficients in
the 3 x 1 vector (; can be interpreted as the ‘price’ of common components risk with ® the
element-by-element (Hadamard) multiplication operator. In addition, considering volatility-in-
mean is advantageous as it may price uncertainty and risk in the common components as well
as approximate arbitrage-free models with volatility-in-mean applicable to derivative pricing
(Duan, 1995; Ludvigson and Ng, 2007; Bollerslev et al., 2008).

Last but not least, another advantage of (10) is that it is general enough to account for other
popular specifications. For instance, with d,, = b,, = 1 and «,, = 0, the model is a VAR in
first differences, with d,, = b,, = 1 and «,, = a < 0 the model is a Cointegrated VAR (CVAR)
and with d,, = d, b,, = b and a,, = a < 0 the model becomes a Fractional Cointegrated VAR
(FCVAR). By considering a general model with various embedded specifications, we can vary
the structure on the set of components at hand (e.g. financial vs. commodities, vs. weather,
ete).

For the idiosyncratic components €, ;;, ® = [, s, ¢, f, we assume simple heteroskedastic au-

toregressive models of order one, i.e.

€o,it = Do i€eit—1 T Qo it, Qe it ~ N(0,weit), (13)

where w, ;¢ follow GARCH(1,1) processes. Similarly, the measurement errors follow het-

eroskedastic autoregressive processes of order one:

ei(t) = @i(T)ei—1(7) + 0it(7), 0it(1) ~ N(0,v:(7)), (14)



vjt (1) follow simple GARCH(1,1) processes. Moreover, we assume that the shocks ae ;+ and g;+(7)
are uncorrelated across i’s, i.e. we assume a diagonal (co)variance structure for these quantities
are given by Dy = diag([wy 1¢, Ws,1ts -, We, Nt Wi Nt|) and Vi = diag([vi(1), v1¢(2), ..., one (T —

1),vne(T)]), respectively.®> The full model can be represented compactly in state-space form,

i.e.
Z, = K+IX; + &, (15)
Xt|It—1 ~ N(O7 Qt)a (16)
ElTi-1 ~ N(0,V,), (17)
where Z = [216(1), ey 216 (T), 226 (1) 5 ooy 226 (T, ey 28t (1) ooy 2ne (T]
Xt = [Lglb,t7 Sglb,t7 Cglb,t7 (X3} Lfin,ta Sf’in,ta Cfin,t; (X3} Lmet,h Smet,b Cmet,ta ceey Fu,tv Fv,t7 FU),t? (33}
€Nt €s,Nts €Nt €f,ne) and & = [e1e(1), ., e16(T), €2¢(1), o0y €2e(T ), oy ene(1), oy ene(T))

Moreover, K is a N - T vector of constants, I is a N -7 x 204 matrix of coefficients with
Q) and V; the conditional covariances of X; and &, respectively. More details about the func-

tional form of the above state-space representation can be found in the Appendix.

3 Data and estimation

3.1 Data description

Term structure data is obtained mainly from BLOOMBERG and in some particular cases from
DATASTREAM. Table 1 summarizes the data collected and the specific sources. We employ
monthly rollover futures series for 36 months at the daily frequency starting from 2010-10-
01 and ending on 2015-09-30.* The sample period chosen was based on data availability and

covering up to eight (8) ‘seasonality years’.> As it is usually the case, some products had the full

3While one could argue that the product and seasonality specific shocks or measurement errors might exhibit
more complex dynamic structures, previous studies have used similar specifications (albeit for monthly data) and
have demonstrated that such simple structures work well in-sample and out-of-sample (Diebold and Li, 2006).
In our context, given our large scale model we opt for simple specifications for the idiosyncratic shocks to keep
our estimations tractable.

4Note that 3 years x 12 months = 36 months + 6 months = 6 cylces/seasons for the seasonality along the
forward dimension 7

A seasonal year is defined here as one that starts on October 1st and ends in September 30th, commonly
known in the gas and power industry as a ‘gas year’.



36 forward months available (e.g. gas and oil, softs and grains) while others had intermittent
data over the 36 forward months (e.g. exchange rates, bonds and some metals). We have
interpolated weekends and holidays for simplicity as weekend data were not available for many
of the products under consideration.®

The data employed for the analyses at the monthly frequency, i.e. the data used for the
mapping of the extracted components to macroeconomic factors (as will be explained below),
are mainly obtained from DATASTREAM and the World Bank Database with some exceptions
which were obtained from the HAVER. We collected macroeconomic data at the country level
for a balanced panel of 19 countries for the same period as for the futures data, i.e. 2010-10 and
ending on 2015-09. All groups of macro data contain the main industrialized economies (G7)
and the main emerging markets (BRICS) amongst others. Detailed information about the data

is provided in Table 1.

3.2 Model estimation

The model described in the preceding section considers time, cross-section and forward dimen-
sions along with a heteroskedastic and regime-switching dynamic specification of the common
components. While the model (or a restricted version of it) could in principle be estimated by
means of the so-called ‘first generation’ dynamic factor approaches (e.g., Kalman-Nelson-Kim
filter given its linear-Gaussian state-space representation) or Bayesian techniques, a large pa-
rameter space renders such estimation approaches computationally cumbersome in particular
when forecasting exercises are at hand. Given that we are dealing with quite a large-scale
model, we opt for the ‘third generation’ approach as detailed in Stock and Watson (2011)
whereby parameters and factors/components of the model are estimated in various steps, and
the state-space representation is subsequently employed for in-sample and out-of-sample anal-
yses. This approach reduces computational time for forecasting and allows for more general
dynamic specifications as opposed to (say) simpler autoregressive models as is the case in other

applications.”

5We have also employed business days as opposed to interpolated weekend data and the results do not differ
qualitatively. We decided for interpolation in order to smooth out any weekend effects out of the analysis.

"In fact, Diebold and Li (2006) show that k-step estimation approaches within the NS framework that are
relatively easy to implement have the advantage that they can be succesfully applied for forecasting without much

10



In what follows we describe the main steps of the base estimation approach considered here.

Additional details can be found in the Appendix of this article.

1. The first step consists of estimating a product’s level, slope, curvature and seasonality
factors [, sit, cit, fit as well as the maturity and amplitude parameters A;; and ki in
equation (1) by means Bayesian Averaging (BAV) based on various procedures which
are summarized in Table 2 along with their advantages and disadvantages. Note that
by employing BAV based on different estimation approaches (Non-linear Least Squares,
Ordinary Least Squares, Generalized Least Squares) and alternative specifications of the
maturity and amplitude parameters (e.g., time-varying product vs. constant product
vs. time-varying sector vs. constant sector) we should reduce uncertainty in the factor

estimates (Hoeting et al., 1999).

2. The second step consists of estimating the factor decomposition in (5)-(8). We start
by standardizing the BAV estimates of the level, slope, curvature and seasonality factors

TBAV sBAV ~BAV
denoted [;;", y Cit

55 and we employ principal component analysis (PCA) to identify

the common components by sequentially (i) extracting the estimated global components
ﬁg,t, §g7t, C'g,t from the factors along time and cross-section dimensions, (ii) regrouping
the residuals into financial and commodity markets and extracting the corresponding
financial and commodity estimated components IA/mﬂg, S”m’t, C’m,t from each market, (iii)
regrouping the residuals into sectors (energy, metals, etc) and extracting the estimated
sector components f)n’t, S*n,t, C'n,t from each sector. The seasonality components Fut,
F,;, Fy are the three first principal components of the seasonality factors fi?AV obtained
along both time and cross-section dimensions. Given the estimated common components
lALj,t, gj,u CA’N for j = g, m,n and Fuﬂg, Fv,u Fwﬂg we employ system Generalized Method of
Moments (GMM) to (re)estimate the parameters in (5)-(8) for all i = 1, ..., N. We employ

one lag of the component estimates as instruments and a Newey-West HAC covariance

as weighting matrix. The idiosyncratic component estimates €, ;; for ¢ = [, s, ¢, f are the

computational burden. Similar findings on the out-of-sample applicability of multi-step estimation are provided
by Caldeira et al. (2015, 2016). For a deeper discussion on the advantages and disadvantages of alternative
dynamic factor modeling approaches, we refer the reader to Stock and Watson (2011) and leave the comparison
between alternative estimation methods for future research.

11



residuals resulting from the GMM system regression.

3. The third step consists of estimating the RSFCVAR-OGARCH-M model in (10)-(12) (or
restricted versions) for the global, market, sector and seasonality common components
by means of (concentrated) Maximum Likelihood (ML). The likelihood function for j =

g,m,n, f is given by

L5 =" log [m) - N (Vilre = 1) + (1= 7)) - N (Valre = 2)] (18)
teT
where WJ(}t) = P(ry = 1|Z;—1) is the probability of regime 1 conditional on the information

set Z at period ¢t — 1, N'(+|r; = r) is the conditional Normal distribution given that regime
r = 1,2 occurs at time ¢ for Yj; = X;;|Z;—1. We employ the Hamilton Filter (HF) in order
to approximate the conditional probabilities 7T§}2 and the contribution of N'(:|ry = r) to
the likelihood for each regime r = 1,2. Note that we account for different versions of (9),

whose restrictions are found in Table 3 and for which the HF is not needed.

4. The fourth and last step consists of estimating (13) and (14) by employing the idiosyncratic
component estimates €, ;s obtained from the GMM residuals in step two and the measure-
ment error estimates &;(7) obtained from ét = Z — f[zlA’t in (15) and employing ML to
estimate the autoregressive and GARCH(1,1) parameters for each i and 7. In this case, the
likelihoods reduce to £; = Y, 1og [N (€ait|Zi—1)] and Li(7) = >, cplog [N (€i(7)|T-1)],

respectively.

Once the parameters of the model have been estimated, we employ the state-space representation
in (15)-(17) to conduct various in-sample and out-of-sample analyses which are described in the

following sections.

4 In-sample analysis

4.1 Variance decompositions

The factor decomposition of our model presented in Section 2.1 provides an excellent platform

for analyzing the contribution of each of the common components to explaining the percentage

12



variation in the variance of the level, slope, curvature and seasonality factors of the term struc-
tures considered. Since our model accounts for conditional variances, we can decompose the
variance contributions of the components at every point in time. For the purpose of this study

we consider the following factor decompositions in percentage terms:

1 = Vary,, [Lg,| + Vary ;, [Lm,] + Vary ;, [Ln .| + Vary, ;, (€. ,
+ @%,iu [Sg#] + @%w [Smu] + @%,iu [Smu] + @%,iu [Es,m] )
+  Vary ;, [Coul + Varg i, [Cim,u] + Varg i, [Cn ] + Varg i, €cipl ,

+ Var%,ip, [Fk,u] + Var%,i,u [Fv,u] + Var%,iu [F’w,u] + Var%,iu [ef,iu} ; (19)

where p = 1,...,T), is used to denote a particular month whereby ¢t € p and @%,u [e] is the
average percentage variance contribution of component = Ly ,, Ly, 4, ... over month . We
aggregate the daily decompositions at the monthly level for two main reasons. First, in practice
most macroeconomic analyses are performed at the monthly, quarterly or yearly frequencies.
Second, by aggregating at the monthly level we can reduce ‘noise’ that may occur at the daily
level due to volatility ‘jumps’ while conserving the overall trends in the percentage variance

contributions.

4.2 Macroeconomic mapping

As mentioned previously, several studies have documented the strong explanatory power of
term structure factors vis-a-vis the macroeconomy (Ang and Piazessi, 2003; Diebold et al.,
2006; Cochrane and Piazessi, 2008). Our study takes this type of analyses forward by mapping
the estimated global, market and sector components of the level, slope and curvature factors
obtained from commodities and financial term structures to the macroeconomy. Note, however,
that in the case of a macroeconomic analysis at the monthly level, the large dataset considered
here and relatively few data points at the monthly frequency (60) makes it impossible to use
all country specific data in single regression models. Thus, we aggregated all country informa-
tion in a set of common factors obtained from each of the categories of macroeconomic data

(consumption, consumer prices, industrial production, etc) as detailed in Table 1. The factors
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are computed by means of PCA, and we chose the number of principal components based on
the percentage variance explained which we truncated to 95%.8 Specifically we consider the

following model:
Aij,u = <I>JA12M“ + Eju, (20)

where A'? denotes the year-on-year (yoy) difference operator X = [ﬁju,gjﬂ,é’ju]/ is the
vector of yoy changes of the estimated level, slope and curvature components for j = g,m,n
at month p, M, = C/’P\IM,C/*P\IQH, ...,W\Plu,m%]/ is the vector of yoy changes of the
estimated macroeconomic components, ®; is a matrix of macroeconomic loadings and E; ,, is a
vector of measurement errors.? To correct for possible endogeneity in the regressors, as well as
heteroskedasticity and autocorrelation in the measurement errors we employed system GMM
estimation with one lag of the factors as instruments and an estimate of the inverse of the

Newey-West HAC covariance as weighting matrix.

5 Forecasting Methodology

In the following subsections, we describe the forecasting strategy designed for this study. In
order to save on space, we concentrate on the most relevant issues. Specific details that are not

described here or in the Appendix to this article can be provided upon request.

5.1 Forecasting design

We employ a forecasting scheme whereby we estimate all parameters needed to ‘calibrate’ the
state-space representation in (15)-(17) with in-sample data up to time ¢ = 1,...,T and obtain
multi-step ahead forecasts T + h,T + h + 1, ... for horizons h = 1,7, 30, i.e. daily, weekly and

monthly (the most frequently used horizons in practice). The chosen set of out-of-sample dates

8Nevertheless, in some cases the later procedure resulted in too many factors relative to the data points
available. Thus, we truncated the number of factors to two (2) when more than two factors were needed to reach
the 95% cumulative variance threshold.

9The variables in M, are all in logs except for interest rate data and inventory changes.
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run from 10/2014 to 09/2015. Formally, forecasts are computed as

Zinp = K+ Xnp + Epnprs (21)

ZA31t+h|t = ﬂ@t+h\tﬁ/+vt+h\t- (22)

In order to illustrate the forecasting procedure in the following discussion, we concentrate on
general concepts and refer the reader to the Appendix for other details. In our context, we
have two regimes r; = 1,2 embedded in the full dynamic specification in (9). That is, forecasts
generated from (9) apply for each of the regimes with corresponding parameters d,., by, 3, oy, T'v

A /
for r = 1,2. More precisely, forecasts X;; p; = [Lj,t+h|t,Sj7t+h|t,0j7t+h|t} for j = g,m,n or

N N ~ ~ /
Xj,t+h|t = Fu,t+h|taFv,t+h\ta Fw,t+h|t for j = f are computed as

¢ _ -~ ¢ (1) - (1) ¢ (2)
Xjtrnt = T tthlt Xj,t+h\t +(1- 7Tj,t+h|t) : Xj,t+h\t’ (23)
where )A(J(?Jrh‘ , for r = 1,2 are the forecasts corresponding to each regime and fr§?+h‘ , Is an

estimate of the conditional regime-switching probabilities at horizon h. Note also that multi-
step ahead forecasts H jt+hjt can be obtained recursively so that they can be applied for the
GARCH-in-mean estimates or as input for the conditional covariance matrix Q, a0 (22).

In the case of the measurement errors in (14) and idiosyncratic components in (13) it is
relatively straightforward to obtain multi-step ahead forecasts €, ;45 and &; +h‘t(7) as these
quantities follow simple autoregressive processes. The same applies for the conditional variance
forecasts Wiy p; and Oy p,p(7) which assume GARCH(1,1) processes and whose multi-step ahead
specifications are well-known (Tsay, 2010). The term structure forecasts that result from (21)

conditioned upon 21?t+h|t and €t+h\t are given by:

Zirnt(T) = Tipsnge + Ao, T)3irpnge + Ac(Ni, T)eitrnpe

+  Ajg(kq,cos(,m),sin(r, n))ﬁt+h|t + Eitpne (7)- (24)

Analogously, the volatility term structures that result from (22) conditioned upon Qt+h|t and
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Viynje are given by

Vare [z (1)) = Varg [lippn] + As(Ai, 7)2 - Varg [sin] + Ac(Xi, 7)? - Var [eiein]
Af(f% COS(T, n),sin(r, 77))2 : \/7a\1“t [fit+h]

206 (As, 7)Covy [Litshs Sittn] + 206 (s, 7)Cov; (Lit+hs Cit+h)]

2A 4 (i, cos(7, 1), sin(7, 7)) Covy [l n, firn]

205(Ai, T)A (i, 7)CoVe [Sitsn, Civn)

205 (Ai, T)A f (R, cos(r, n), sin(7, 7)) Covy [Sivn, fitsn)

+ o+ o+ o+ o+ o+

20 (Ni, ) A g (i, cos(7, m), sin(7, 7)) Covy [Cirsns fitrn] + Vary [ein(7)](25)

where Var [e] and Covy [e] are estimated (co)variances conditional on information available up
to period ¢.10

Ideally, we could estimate the model up to its forecasting origin and roll the estimation
to the next forecasting origin and so on, i.e., we could employ a rolling window (or recursive)
scheme for the estimation of parameters and subsequent forecasting. However, in our context,
rolling (or recursive) estimation is cumbersome due to the large scale model under consideration.
Instead, we have broken down the analysis into three sample periods for estimation (10/2010-
09/2012, 10/2012-09/2013, 10/2010-09/2014) and used a Jacknifing procedure first introduced
by Quenouille (1956) and employed empirically and in Monte Carlo simulation settings more
recently by other studies (Chiquoine and Hjalmarsson, 2009). The Jacknife estimator of our
model(s) is given by

- S . S U
\Ijrt,Jack = ﬁ . \Il,,,hf - ﬁ (26)

where, S is the number of consecutive subsamples and U W, ; are the vectors of estimated

re, 1

parameters for the full sample T and the I-th subsample. The above estimator has been shown

to reduce the bias induced by estimating parameters when using a limited number of calibration

19Note that in the expressions in (24) and (25) we assume constant estimates \; and #; as opposed to their time-
varying versions. This is done because the time-varying case would imply assuming and estimating a dynamic
specification for Mit and R;¢ which is out of the scope of this paper. Thus, for the purpose of this study we use
the mean of the BAV estimates AZ4Y and 254" up to the forecasting origin for subsequent forecasting.
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windows instead of, e.g., rolling (or recursive) estimation schemes.!! Moreover, in our context
we are assuming time variability (i.e. regime-switching) in some parameters of the model so
that, together with the Jacknifing approach, should help us circumvent the drawbacks of not
employing a rolling (or recursive) estimation scheme.

As mentioned previously, some restricted versions of (9) might fit some components better
than others, i.e. there could be a certain degree of heterogeneity with respect to global, market
or sector specific data dynamics. In order to reduce model uncertainty we employ Bayesian
averaging of the parameters obtained from the restricted versions considered of the dynamic

specification in (9).!2

5.2 Forecast evaluation

We employ a battery of tools to evaluate the out-of-sample performance of the proposed frame-
work. We focus on statistical and economic performance measures that aim to uncover the
accuracy of point and interval forecasts of the dynamic specifications as well as the hedging

performance within a portfolio of spot and futures contracts.

5.2.1 Statistical performance measures

Let M and M, indicate a particular competing model and the benchmark, respectively. Our
benchmark model is the random walk model for the factors. We chose this specific benchmark
since the random walk model is the most widely used benchmark in practice to forecast the evo-
lution of financial prices an other assets (Grauwe and Grimaldi, 2006). The average performance
M. relative to My for each product 4 is computed as

d;i(M.)

11\We have also experimented with rolling-window and recursive schemes for estimation of parameters and sub-
sequent forecasting with a smaller version of the model. However, rolling estimations of some of the specifications
estimated with the Hamilton filter were very time consuming and the results were qualitatively not better than
with a few sample windows and the Jacknifing procedure. Indeed, the latter corroborates findings by Chiquoine
and Hjalmarsson (2009)

12\We experimented with combining forecasts directly with different forecast combination routines but the
results turned out to be qualitatively similar to Bayesian averaging of the parameters in some cases and not
better statistically in other cases.
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where d;(Mp) and d;(M.) are defined as the average MSE of the benchmark and of the com-
peting model, respectively. There are several tests available to analyze, whether a particular
benchmark model M, has the same predictive ability as a competing model M., against the
alternative that model M, has a better predictive ability based on Mean Squared Errors (MSE)
(Diebold and Mariano, 1995; Harvey et al., 1997; Clark and West, 2007; McCracken, 2007). In
this study we employ the test proposed by Clark and West (2007), which corrects the non-
standard limiting distribution under the null of equal forecasting accuracy to a nested model.
Moreover, we test interval forecasts generated from the model by means of the three-step pro-
cedure proposed by Christoffersen (1998) which evaluates whether interval forecasts satisfy the

so-called (i) unconditional, (ii) conditional and (iii) independence hypothesis.'?

5.2.2 Economic performance measures

We test the economic significance of the futures forecasts by ‘simulating’ a dynamic hedging
strategy whereby an agent enters into a spot position and into a futures contract position with
the aim to reduce the variability of his/her portfolio’s value. That is, the agent seeks to minimize
the variance of his/her portfolio by chosing an optimal amount of futures position per unit of
spot position. The set up is very similar to the one found in previous studies where conditional as
opposed to unconditional moments are treated (Kroner and Sultan, 1993; Brunetti and Gilbert,
2000; Moschini and Myers, 2003). In our context, the minimization problem reduces to the

following hedge ratio:

COVt [I'z‘t—i-h(l)a rit+h(T)]
Vary [r1n(7)]

HRit.h = (28)

where r;; (1) = 2z;:(1) — ziz—1(1) is the (log) return of the spot (month-ahead) product, ry(7) =
zit(T) — zit—1(7) is the (log) return of the futures price at forward month 7 for product i, and
Covy [/] and Var;[-] are the time-dependent (co)variances of ri(1) and ri(7) conditional on
information available up to time ¢. Our benchmark model is a constant hedge ratio denoted

HRp 5 obtained by replacing (28) with unconditional moments estimated up to the forecasting

13To save on space, we refer the interested reader to the Clark and West (2007) and Christoffersen (1998)
articles for details about the respective tests.
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origin.'* We evaluate the performance of the dynamic hedging strategy by means of the so-called

variance reduction measure:

Var(ry, ;|

VNip= | —=—
Var[rzvp]

—1, (29)

where Var[ry, ] is the variance of the portfolio resulting from hedging with conditional moments
fitted from our model and Var[rg p] is the variance of the portfolio resulting from hedging with
the benchmark. Following Lee (2009a,b), in order to test the statistical significance of variance

reduction we use a test of predictive accuracy such as the Clark and West (2007) test.

6 Results

In what follows we discuss the in-sample results of our analysis and subsequently the out-of-
sample results. We opted to display our subsequent results in relevant figures that highlight the
main features of our modelling framework as far as possible as opposed to large tables for space

considerations. Detailed results not displayed here can be provided upon request.

6.1 In-sample results

Figures 5 and 6 display the results of the in-sample estimation for the parameters A;; and kg
by means of BAV. The figures display the degree of heterogeneity for the maturity parameters
amongst the different products under inspection and this finding holds not only for commodity
markets but also for financial markets. This result indicates that when fitting such a NS-type
model with alternative markets, sectors and global data, it is advisable to estimate the maturity
parameter as opposed to ‘calibrate’ it as it is done in previous studies (Diebold and Li, 2006).
The latter result also confirms recent findings by Karstanje et al. (2015) who put forward a
non-trivial degree of heterogeneity in the maturity parameters of their commodities model. The

figures show not only that the maturity differs across products but that it varies with time in

M Note that we assume a ‘pair’ strategy for simplicity, i.e. we assume that the hedging is done with respect
to one of the futures contract with forward dimension 7 and do not consider cross-commodity hedges. This is
indeed very interesting for practitioners but is out of the scope of this article.

19



most cases as proposed by Koopman et al. (2010). Since the \;i’s can be interpreted as the
mean-reversion rate of the slope and curvatures of the term structures, the heterogeneity and
time-variability of this parameter suggests that the ‘velocity’ and shape of adjustment into, say,
contango or backwardation of terms structures differs amongst products and over time. The
amplitude parameters also seems to be time dependent but the level of heterogeneity is not as
strong.

Figure 7 displays selected examples of the estimated level [;;, slope s;;, curvature ¢;; and sea-
sonality f;; factors of the products considered with four of the different estimation approaches
employed (OLSPRD, GLSPTV, OLSSEC, BAV). As can be noted from the figures, the ap-
proaches differ quantitatively (as expected) in some time periods but overall they exhibit similar
path profiles. In terms of the Bayesian weights computed, however, it appears as if the OLSPTV
and GLSPTYV approaches provide more useful information in terms of Bayesian Information Cri-
teria (see Table 2 for further details). Figure 2 displays the fitted smoothed futures prices over
the time dimension for all the products considered. Moreover, Figures 3 and 4 show futures
price and volatility term structures over time and forward dimensions for selected examples of
the products considered. The latter figures show an interesting implementation of the model as
the model-based term structure data over several forward months can be employed for approx-
imating expectations of future price and volatility paths of the products considered every day
and for every forward month wished. This application is important for practitioners as for some
products only intermittent data is readily available at the daily and forward dimensions (e.g.
foreign exchange, equity futures, aluminium, etc) and practitioners use these data as inputs for
taking decisions (i.e. option pricing, hedging, etc).

Tables 4 to 8 show the in-sample estimation results of the component loadings, the long-
run and short-run parameter estimates of the RSFCVAR-OGARCH-M and some diagnostics
of the alternative dynamic specifications considered, respectively.'®> The results of a likelihood
ratio test favors the heteroskedastic specification (FCVAR-OGARCH) vis-a-vis the homoskedas-
tic specifications (VAR, CVAR, FCVAR) for most of the component estimates. Similarly, we

find that the likelihood ratio test favors the heteroskedastic and regime-switching specifica-

15We only present the results of the full specification RSFCVAR-OGARCH-M to save on space. Detailed
estimation results for the restricted versions can be provided upon request.
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tions (RSFCVAR-OGARCH, RSFCVAR-OGARCH-M) over the heteroskedastic but non-regime
switching counterpart (FCVAR-OGARCH) for most component estimates. Parameters of the
RSFCVAR-OGARCH-M model are statistically significant for the most part except for some
cases, for instance, the volatility-in-mean parameters of some of the components (Table 7). The
latter result suggests that risk is not significantly ‘priced’ in the conditional mean (in a statistical
sense) in most components.'® In fact, previous studies that analyze the risk-return relationship
have found mixed results with respect to direction or statistical significance of the effect of
risk variables in the (conditional) mean of asset pricing models (Campbell and Hentschel, 1992;
Ludvigson and Ng, 2007; Bollerslev et al., 2008). Overall, we find that the dynamic specifica-
tions that account for fractional cointegration, regime switching and heteroskedasticity fit well
the data in-sample and are statistically better than their restricted and ‘simpler’ counterparts
(VAR, CVAR, FCVAR) for most components according to the in-sample diagnostics considered
(LR, BIC).

Figure 9 displays the variance decomposition of the factors for each product at each point
in time aggregated at the monthly frequency while Table 11 presents results aggregated over
the full sample and over sectors. We find that the global components can explain on average
about 20% of the variance of the factors across all products considered while the market, sector
and idiosyncratic factors can explain up to 20%, 20% and 30% respectively. With respect to
the seasonality components, we find that these variables can explain up to 5% of the variance
of the term structures while the seasonality idiosyncratic component explains up to 5%. While
it is not possible here to compare these results to previous studies directly as there are, to the
best of our knowledge, no one-to-one comparable models, we find that other studies have found
similar results on the contributions of global, sector specific and idiosyncratic components to
total variation in term structures (Diebold et al., 2008; Diebold and Li, 2006; Karstanje et al.,
2015). Moreover, it is worth noting that the results on previous studies hold ‘on average’ while
we show that the variance decompositions appear to be strongly time dependent as depicted in

Figure 9.

'S An earlier (experimental) version of our model accounted for regime changes in the GARCH-in-mean pa-
rameters. However, the large parameter space made it very cumbersome computationally without some evident
forecasting gains. Thus, we decided for the simpler specification treated here.
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Table 9 and 10 show the mapping of the extracted components to macroeconomic factors
as introduced in Section 3. We find that the global components are related to variables such
as exchange rates, wages, price-earnings ratios, leading economic indicators, employment and
house prices. In turn, the market component of commodity products is related to variables such
as output growth, exchange rates, volatility of exchange rates, business confidence, amongst
others while the market component of financial products is explained by inflation, dividend
yields, wages and terms of trade. The bond component is related to variable such as term
spreads, wages, employment and house prices amongst others. The foreign exchange component
is related to exchange rates, business confidence, leading economic indicator, term spreads,
amongst others. The equity component is related to leading economic indicators, PE ratios and
wages, amongst others.

The energy component is related to business confidence, exchange rates, volatility, house
prices, amongst others. The metals component is related to output growth, exchange rates,
leading economic indicators, consumption, amongst others. Other commodity sector compo-
nents (grains, livestock and softs) are related to macroeconomic factors of the energy sector in
general. Our results follow the same line of previous studies where unobservable components in
financial and commodity prices can be successfully mapped to the U.S. macroeconomy (Fama
and French, 1987, 1988; Ang and Piazessi, 2003; Diebold et al., 2006). Our study takes the
mapping one step forward as we show that the world, market and sector commonalities of fi-
nancial and commodity term structures have information that can ‘replicate’ movements in the
macroeconomy in an international context.

Overall, we find that the dynamic specifications proposed for the components fit the data
well in-sample. We also find some degree of heterogeneity amongst model specifications within
alternative components which hints at the possibility that ‘hybrid’ specifications obtained trough
combined models (e.g. through Bayesian averaging) might reduce forecasting uncertainty. More-
over, we uncover an economic and statistical significant relationship of the unobservable com-
ponents to the macroeconomy which suggests that these variables might serve as complement
or alternative to macroeconomic data at lower (e.g. monthly) or higher (e.g. daily) frequen-

cies. What degree of predictability power these components have at the daily frequency will be
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uncovered in the next section.

6.2 Out-of-sample results

In this section we discuss the out-of-sample results. We start by discussing the results of the
statistical performance measures and subsequently the economic performance measures.

As discussed in Section 4.1, we perform evaluations with alternative tests that aim to ana-
lyze different features of the out-of-sample forecasts generated by our model. Given the large
set of forecasts generated by our model (cross-section, time and forward dimension) we have
summarized the results of our various tests in boxplots which are displayed in figures 9 and
10. The boxplots show the tests aggregated over the cross-section dimension for multi-step
ahead horizons h = 1,7, 30 (daily, weekly, monthly) and for the forward dimensions 7 =1, 3,6
(month-ahead, quarter-ahead and semester-ahead).

In terms of forecasting accuracy by means of the Clark and West test, we find that many
products generate forecasts that are statistically better than those of a random walk type model.
However, we find that at the aggregate level the forecasting accuracy of the model is only slightly
better than the random walk specification when observing the median of the distribution of test
statistics. The latter result is in line with the relative MSE results which show that the model
generates more accurate forecasts than a random walk benchmark for various products but at
the aggregate level, relative MSE are only slightly better at higher horizons as shown by the
median of the distribution.

Interestingly, however, we find that the interval forecasts generated comply with the un-
conditional, conditional and independence hypothesis at alternative forecasting horizons and
forward dimensions. The latter result holds at the aggregate level as well as at the product
specific level. While the accuracy of point forecasts vis-a-vis a naive benchmark appears to
be product specific, interval (i.e. density) forecasts generated from the model provide accurate
information with respect to the out-of-sample distribution of term structures.

As introduced in Section 4.3, we also test the economic significance of the forecasts of our
proposed model by testing the performance of a hedging strategy resulting from the variance

minimization problem of a portfolio constructed of a spot and a futures position. Results over
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all 42 products are displayed in Figure 10. The results indicate that the model generates on
average a reduction of about 20% in portfolio variance in relation to a naive strategy. Results on
the statistical significance of the variance reduction by means of the Clark and West test show
that, as in the case of point forecasts, the reduction in variance significantly improves upon a
naive strategy at the product specific level but is only slightly better than a naive strategy at
the aggregate level.

Our results confirm findings in the rising literature on hedging in commodity markets which
show that fractional cointegrated and regime switching models have good forecasting capabilities
vis-a-vis naive benchmarks from both a statistical an economic perspective. However the results
depend many times on the product, horizon and forward dimension analyzed (Boswijk et al.,

2015; Cavalier et al., 2015; Dolatabadi and Nielsen, 2015; Dolatabadi et al., 2015).

7 Conclusion

The present article proposed a framework for modeling and forecasting financial and commod-
ity term structures in a unified global setting. Our framework not only allows analysts to
extract interesting and useful information in-sample such as time-varying variance decomposi-
tions, dynamic correlations, mapping to the macroeconomy, but also provides a value added for
forecasting both in terms of statistical and economic performance measures. The main results of
our study show that the extracted components can account for an important amount of the total
variation in the data. The mapping to the macroeconomic fundamentals show that there is, as
expected, a statistically significant relationship of the extracted components to macroeconomic
variables.

As for the out-of-sample evaluation we find that the proposed model can generate forecasts
that outperform a naive benchmark (random walk) at the product level in terms of point-forecast
accuracy and variance reductions resulting from an artificial hedging strategy. At the product
and aggregate level we find that the proposed model generates accurate interval (i.e. density)
forecasts according to the unconditional, conditional and independence hypothesis tests.

The results of this study are not only useful for academics extending versions of the NS
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model but also for practioners who use term structures to take decisions with respect to hedg-
ing, portfolio optimization or financial and monetary policies. An interesting extension to the
present analysis would be whether other volatility structures (e.g. stochastic volatility or dy-
namic conditional correlations) can improve upon the current results in terms of statistical and

economic performance. We leave these issues to future research.
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A State-space representation

The state-space representation of our model is given by:

_ _ B l— 7] Lene,t
z1t(1) ; Sene’t
1 — -
th(2) . me’t Cene,t
. 1
: 3 S t Lmett
fl I b com, )
216(T) g C Smet.t
. - A + B Sglbﬂﬁ + C com,t + D Cme
: _ Lfm,t met,t
awe(1) In Cyiv,t Stims )
Nt _ in, :
: fN Cfin,t Leqt,t
: eN L |
L 2ne(T) | fn Sleqt,t
B N | Cegtyt |
€11t _ _
€s,1t Elt(l)
€c,1t
Fuy €f,1t e1(T)
+ E| Fy |+A] ¢ |+ :
Fut €1,Nt ene(1)
€s,Nt
€c,Nt i ENt(T) ]
L evat i

= A-J+B- X +C-Xps +D - X+ E-Fr+ AU + &

= K+ [B,C, D, E, Al[Xys; Xt Xngs Furs Us) + &, (30)

— K+IX+E. (31)

where we use semi-colon (;) to denote vertical concatenation. The matrices of coefficients are

given by:
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Term structure conditional (co)variances and correlations are given by:

Xy
Pt
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03 Hcom,t
. 03
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Lgib @ Hypp ¢

Leom & Hcom,t

bw @ Hyy
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0 0

V, =
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O3  wor eee s 03
0s ) )
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0 wa O 0
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= diag([v1e(1), v1¢(2), ..., vNe (T — 1), one(T)]),

(40)

where 03 is a 3 x 3 matrix of zeros, Hy = [tg1 @ Hgipt; tcom @ Heom,ts -5 tf @ Hyy], with vy =

(1,0,...,0Y, teom = (0,1, ...

diag([wi,1t, Ws,1¢5 -+ We, Nty W Nt )-
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B Estimation

In what follows we describe in more detail the estimation approach.

1. We first estimate the product’s level, slope, curvature and seasonality factors l;, s;t, Cit, fit
as well as the maturity and amplitude parameters \;; and k;; in equation (1) by means of
Nonlinear Least Squares (NLS) at each point in time. In addition, we obtain Least Squares
and Generalized Least Squares estimates of the factors l;, sit, ¢;+ and f;; at each point
in time by (i) using the NLS time-varying estimates Ay and &; (OLSPTV/GLSPTV),
(ii) using the mean NLS estimates per product \; and &; (OLSPRD/GLSPRD), (iii)
using ‘Mean Group’ NLS time-varying estimates averaged over sectors At and Ang
(OLSSTV/GLSSTV), (iv) using ‘Mean Group’ NLS mean estimates averaged over sec-
tors A, and &, (OLSSEC/GLSSEC).!” Given the candidate estimates of the factors ob-
tained via NLS, OLSPTV, GLSPTV, OLSPRD, GLSPRD, OLSSTV, GLSSTV, OLSSEC,
GLSSEC we compute Bayesian average (BAV) estimates of the factors l;, s, ¢ix and fi

as well as maturity \;; and amplitude x;; as:

Y = Wiy, (41)
§BAV = w85, (42)
eBAY =Wl ey, (43)
fEAY = Wik, (44)
MY = Wiy, (45)

eXp(—0.5BIC]‘,it)
>/ exp(—0.5BIC;, ;1)
tained from estimation type j at time ¢ for each i. Moreover, l;;,8;, €, £ are vectors

where w;; = with BIC;; the Bayesian information criterion of (1) ob-

containing the factor estimates and mj;;, a;; are vectors containing the estimated matu-
rity and amplitude parameters obtained with the candidate estimation procedures. The
weights hold given diffuse priors and equal model prior probabilities which is assumed

here for simplicity (Hoeting et al., 1999).

2. Given the BAV estimates for the level, slope, curvature and seasonality parameters,

we demean and standardize the BAV factor estimates denoted ZgAV, §5AV, égAV for
i = 1,...,N. We extract the first principal component from each of the BAV factor
estimates denoted i}gﬂg, S'gvt, ég,t? with corresponding factor loading estimates ’Ayi ; for
j =1,8,¢, g = {global} and i = 1,..., N by means of Principal Component Analysis
(PCA) Let dlg,zt — liB;AV _ ,%97 g sBAV 29 ~g ~BAV

. o B g A
L.t Ag it = Sig — 75,ng,ta Aeir = Gt — %,z’Cg,t» for
i = 1,..., N be the resulting residuals. We break &?it for j = l,s,cand i = 1,.... N

7

into two market groups, i.e., commodity markets (energy, metals, softs, grains, livestock)

1"We experimented with median as opposed to mean estimates of the NLS it and A but results turn out to
be very similar.
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and financial markets (forex, bonds, equity) and extract the first principal components
from each group denoted ﬁmt, S’mt, C’mt with corresponding factor loading estimates
4fy for j = g,s,¢, m = {commodities, financials} and i = 1,..., N by means of PCA. Let
al i = al it ’}/l7Z-Lm7t, ay’ it = ai it fyS’iSmyt, it = a? it 'Ycngt fori=1,...,N. We break

aj M forj =1,s,candi = 1,..., N into eight sector groups, i.e., energy, metals, softs, grains,
livestock, forex, bonds, equity and extract the first principal components from each group
denoted I:M, S’m, C’nt with corresponding factor loading estimates %7; for j = g,s,¢,
n = {energy, metals, softs, grains, livestock, forex, bonds, equity} and i = 1, ..., N by means
of PCA. In the case of the stochastic seasonality factors f;;, we demean and standardize
the BAV estimates denoted ff AV for i = 1, ..., N and obtain the first three principal com-
ponents of the data denoted Fu 4 Fv it Fw t, with corresponding factor loading estimates
fyfl for e = u,v,w. Given the candidate component estimates Lgt, Sgt, Cgt,Lmt, Smt,
Cm s L.t Sn 4 C’n it Fu ) Fv t Fw .+ and the BAV factor estimates obtained in the previous
step, we (re)estimate the parameters of the system specification (5)-(8) for alli =1,..., N
by means of system GMM. We employ one lag of the components as instruments and the
inverse of a Newey-West HAC covariance (obtained from the OLS residuals in a first step)
as weighting matrix. The idiosyncratic components é, ;; for ¢ = [, s, ¢, f are the residuals

of the system GMM regressions for all i.

. Let X = [ it Sjt, C’jt] for j = g,m,n or X;; = [Fut, th, Fwt] for j = f. The
state variable r; in the conditional mean of (9) which drives the time-variability of the
parameters d, «r, 5, " is assumed to evolve with respect to a first-order Markov chain, with

transition probability given by:
P(Tt = y|rt = -T) = Txy- (46)

The expression above describes the probability of switching from regime x at time ¢ — 1
to regime y at time ¢. In this article we consider two regimes, that is r, = 1,2, so that the
uncoditional (ergodic) probabilities of being in state r;, = 1 or state r; = 2 are given by
71 = (1 —7y)/(2 — Tpe — myy). In what follows let Z; denote the information set available
to the econometrician at time ¢. To save on notation, we write (9) compactly as,
Yie=X[) = Vi) + &0, (47)
where V(T) = Y — & = EYj|Tia] = Tj,dj,rX](;) + aj,r5§,rAdj”“_bj”’Tj,bj,rX](Q) +

25 1 FJJDTAd”Tp X](-? for every j = g,m,n, f. We write:

Eil) for 7['(1)

Y| Ze—1 ~ —(2) (1) ,uﬁ) (dy, by, B, ol vec(T,), diag(9)’, diag(d)’, ¢')’, (48)

N for 1—m;
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(r)

where A (o) denotes the conditional normal distribution, =;'’ is the vector of parameters

; (1)
for the r-th regime and 7,

= P(ry = 1|Z4—1) is the probability of regime 1 conditional on
the information set at period ¢ — 1. The parameters 3., a/., vec(I',.) are concentrated out

of the Likelihood estimation and estimated via canonical correlation analysis and OLS
1 )

(Johansen and Nielsen, 2012). The conditional probability T4 is given by:
0 NVl = 2) 1 =) )
ﬂ-j,t = P(Tt = 1|It,1) = (1 — 7T22) ( (1)
N( git— 1|7“t 1= 1) Tyt—1 +N( jt— 1|7"t 1= 2)(1 _ﬂ-j,t—l)

N(Yji—1|ri-1 :1)77](‘1271 ] (49)
N(Vialres = Drl) |+ N (Voo = 2)0 -7l )

11

The likelihood function is then given by (18) and the conditional Normal distribution

given that regime r occurs at time ¢ is given by
1 — 1 r — r
N Yjilre =1) = ) |Hjtl 2 exp {—2 (Yjﬂ - V;,t)) Hj,tl (Yjﬂf - V](',t)) } . (50)

4. Given the estimated idiosyncratic components €, ;; obtained from the system GMM re-
gression in step two and the measurement errors £;(7) obtained from & = Z, — 11X,
using the estimated matrix of parameters II in (32)-(36), we employ ML to estimate the
autoregressive and GARCH(1,1) parameters in (13) and (14) for each i and 7.

C Forecasting

Following Dolatabadi et al. (2015), the multi-step ahead forecasts of the FCVAR for each j =

l,s,c, f can be obtained in the case of no regime-switching and no volatility-in-mean as

k
Xjpenpe = T, 41X wnp + djﬁ;‘Ad_ijﬁXj,t—l—hlt + Z Fj,pAdT?l;Xj,tJrhn (51)
p=1
Note that since Y;, is a lag operator, the right hand side of (53) is conditional on past infor-

mation. In the case of regime switching parameters and volatility-in-mean we have

X0, = 1 X0

A A dy—by dy (r)
il t+h|t+aj,rﬁ§,TA T Xt+h|t+zrp A Tp (52)

],t+h\t
+ { © diag ( jt+h|t)

with 7 = 1,2 and the weigthed forecasts are then given by (23). Moreover, in order to compute

forecasts of the conditional (co)variances of the term structures we start by noting that the
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OGARCH volatilities for each j = g, m,n, f can be computed from (12) recursively as:

th+h|t = IK + dlag(é] + Sj)h_l ® (th+1|t — IK) 5 (53)

A~

Hjponye = BB, (54)

where [ is an identity matrix of order K = 3. Given I;[jt+h\t for j = glb, fin,com, ... in (54)
and estimates for the GARCH(1,1) volatilities of the idiosyncratic components &, j;1p; and of
the measurement errors 0;;,5,:(7) we can compute bt+h|t and Vt+h\t and subsequently (39), (40)
and (22) with the estimated II.
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ESTIMATION APPROACHES

Type Advantages Disadvantages
Relatively simple Numerical optimization for factors estimation
NLS Product specific time-varying parameters Static factor estimation
Flexible for dynamic specification No factor uncertainty correction
Very simple Constant parameters
No numerical optimization for factor estimation Static factor estimation
OLSPRD Flexible for dynamic specification No factor uncertainty correction
Product specific constant maturity and amplitude
Not robust under heteroskedasticity
Very simple Constant parameters
No numerical optimization for factor estimation Static factor estimation
GLSPRD Flexible for dynamic specification No factor uncertainty correction
Robust under heteroskedasticity Product specific constant maturity and amplitude
Very simple Constant parameters
No numerical optimization for factor estimation Static factor estimation
OLSSEC Flexible for dynamic specification No factor uncertainty correction
Sector specific constant maturity and amplitude
Not robust under heteroskedasticity
Very simple Constant parameters
No numerical optimization for factor estimation Static factor estimation
GLSSEC Flexible for dynamic specification No factor uncertainty correction
Robust under heteroskedasticity Sector specific constant maturity and amplitude
Very simple Static factor estimation
OLSPTV No numerical optimization for factor estimation No factor uncertainty correction
Flexible for dynamic specification Not robust under heteroskedasticity
Product specific time maturity and amplitude
Very simple Static factor estimation
No numerical optimization for factor estimation No factor uncertainty correction
GLSPTV Flexible for dynamic specification
Product specific time-varying maturity and amplitude
Robust under heteroskedasticity
Very simple Static factor estimation
OLSSTV No numerical optimization for factor estimation No factor uncertainty correction
Flexible for dynamic specification Not robust under heteroskedasticity
Sector specific time maturity and amplitude
Very simple Static factor estimation
No numerical optimization for factor estimation No factor uncertainty correction
GLSSTV . . . X
Flexible for dynamic specification
Sector specific time maturity and amplitude Robust under heteroskedasticity
‘Weighted estimation ‘Hybrid’ estimation
‘Weighted factor uncertainty correction Factor uncertainty reduced
BAV Flexible for dynamic specification

‘Hybrid’ dynamic specification
Weighted time-varying/constant maturity and amplitude
Weighted OLS, GLS, NLS

Table 2: Description of factor estimation approaches considered
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Level Slope Curvature Seasonality

Product GLO MAR SEC GLO MAR  SEC GLO MAR  SEC SF1 SF2 SF3
0.01 -0.04  0.00 -0.09  0.01 -0.04  0.02 -0.03  0.02 0.00 0.00 0.00

BRENT (0.00)  (0.01)  (0.03)  (0.01)  (0.01)  (0.03)  (0.01)  (0.01)  (0.02)  (0.00)  (0.00)  (0.00)
0.02 -0.01  0.00 -0.05  0.01 -0.04  0.03 -0.04  0.05 0.00 0.00 0.00

WTI (0.00)  (0.01)  (0.01)  (0.01)  (0.02)  (0.03)  (0.01)  (0.01)  (0.02)  (0.00)  (0.00)  (0.00)
0.03 -0.00  -0.02  0.03 0.02 -0.11 0.09 -0.13  -0.21  -0.55  0.57 0.11

GASOLINE (0.00)  (0.01)  (0.03)  (0.05)  (0.04)  (0.08)  (0.06)  (0.09)  (0.13)  (0.41)  (0.53)  (0.35)
0.03 -0.04  -0.11  -0.03  0.06 -0.10  0.02 -0.09  -0.04  0.00 0.00 0.00

HEATINGOIL (0.02)  (0.05)  (0.14)  (0.04)  (0.08)  (0.16)  (0.04)  (0.09)  (0.12)  (0.00)  (0.00)  (0.00)
0.03 0.00 -0.02  -0.03  0.01 -0.02  0.03 -0.03  -0.01 0.00 0.00 0.00

GASOIL (0.00)  (0.02)  (0.06)  (0.00)  (0.01)  (0.02)  (0.01)  (0.01)  (0.02)  (0.00)  (0.00)  (0.00)
0.03 -0.02  0.04 0.02 0.02 0.05 0.03 0.01 0.21 0.45 -0.07  -0.04

NATURALGAS (0.00)  (0.01)  (0.03)  (0.02)  (0.03)  (0.06)  (0.04)  (0.05)  (0.13)  (0.38)  (0.51)  (0.60)
0.06 0.01 -0.01  0.03 -0.02  -0.03  -0.00  0.00 -0.02  0.00 0.00 0.00

COAL (0.00)  (0.01)  (0.02)  (0.01)  (0.01)  (0.02)  (0.01)  (0.02)  (0.02)  (0.00)  (0.00)  (0.00)
0.06 -0.08  0.23 0.03 -0.02  0.13 -0.01  0.10 0.04 0.00 0.00 0.00

Co2 (0.04) (0.10) (0.34) (0.04) (0.10) (0.13) (0.08) (0.17) (0.23) (0.00) (0.00) (0.00)
0.03 0.02 0.03 -0.00  0.00 -0.00  0.00 -0.00  -0.01 0.00 0.00 0.00

GOLD (0.01)  (0.02)  (0.02)  (0.01)  (0.01)  (0.01)  (0.01)  (0.02)  (0.03)  (0.00)  (0.00)  (0.00)
0.05 0.05 0.12 -0.01  -0.06  -0.16  0.04 0.06 -0.20  0.00 0.00 0.00

SILVER (0.02)  (0.16)  (0.24)  (0.03)  (0.12)  (0.32)  (0.06)  (0.18)  (0.41)  (0.00)  (0.00)  (0.00)
0.06 0.00 -0.04  0.05 0.01 0.04 -0.04  0.03 -0.02  0.00 0.00 0.00

COPPER (0.02)  (0.02)  (0.04)  (0.02)  (0.03)  (0.07)  (0.03)  (0.03)  (0.08)  (0.00)  (0.00)  (0.00)
0.03 -0.00  0.02 0.02 -0.02  0.01 0.00 0.01 0.02 0.00 0.00 0.00

ALUMINUM (0.00)  (0.01)  (0.01)  (0.00)  (0.01)  (0.01)  (0.01)  (0.01)  (0.02)  (0.00)  (0.00)  (0.00)
0.02 -0.01  0.01 0.00 -0.02  0.02 0.01 0.01 0.01 0.00 0.00 0.00

LEAD (0.00)  (0.01)  (0.01)  (0.00)  (0.01)  (0.01)  (0.00)  (0.01)  (0.01)  (0.00)  (0.00)  (0.00)
0.03 -0.02  0.03 0.01 -0.04  0.02 0.02 0.03 0.03 0.00 0.00 0.00

NICKEL (0.00)  (0.01)  (0.01)  (0.00)  (0.01)  (0.01)  (0.00)  (0.01)  (0.01)  (0.00)  (0.00)  (0.00)
0.01 -0.01  0.03 0.01 -0.01 0.01 0.00 0.02 0.02 0.00 0.00 0.00

ZINC (0.00)  (0.01)  (0.01)  (0.00)  (0.01)  (0.01)  (0.01)  (0.01)  (0.01)  (0.00)  (0.00)  (0.00)
0.02 0.02 0.07 0.01 -0.04  0.04 0.12 0.10 0.34 0.35 0.27 1.35

COTTON (0.00)  (0.02)  (0.05)  (0.02)  (0.10)  (0.16)  (0.10)  (0.14)  (0.19)  (0.44)  (0.35)  (0.96)
0.02 0.00 -0.01  -0.01 0.01 0.07 0.07 0.03 -0.16  0.00 0.00 0.00

WHEAT (0.00)  (0.01)  (0.02)  (0.01)  (0.01)  (0.03)  (0.03)  (0.04)  (0.07)  (0.00)  (0.00)  (0.00)
0.01 0.02 0.02 -0.01  -0.04  0.17 0.11 0.03 -0.37  -0.04  0.58 -0.58

CORN (0.01) (0.01) (0.02) (0.02) (0.04) (0.08) (0.06) (0.06) (0.16) (0.43) (0.62) (0.57)
0.02 0.04 0.09 -0.01  -0.02  0.09 0.08 0.06 0.12 0.21 0.09 -0.12

SOYBEAN (0.00)  (0.02)  (0.06)  (0.02)  (0.05)  (0.05)  (0.03)  (0.05)  (0.10)  (0.25)  (0.21)  (0.31)
0.02 0.04 0.07 -0.00  -0.12  0.13 0.06 0.05 -0.34  -0.17  0.48 -0.08

SUGAR (0.02)  (0.03)  (0.20)  (0.03)  (0.05)  (0.13)  (0.04)  (0.06)  (0.43)  (0.51)  (1.09)  (0.53)
0.02 -0.09  -0.16  -0.02  0.06 0.20 -0.04  -0.07  -0.04  0.00 0.00 0.00

ORANJE (0.02) (0.17) (0.54) (0.03) (0.16) (0.53) (0.08) (0.24) (0.27) (0.00) (0.00) (0.00)
-0.01  -0.05  0.05 0.00 0.00 -0.01  -0.01  -0.00  -0.03  0.00 0.00 0.00

COCoA (0.00)  (0.01)  (0.03)  (0.01)  (0.01)  (0.03)  (0.02)  (0.02)  (0.04)  (0.00)  (0.00)  (0.00)
0.02 0.01 0.05 0.01 -0.08  0.04 0.05 0.08 -0.09  0.00 0.00 0.00

COFFEE (0.01)  (0.02)  (0.05)  (0.01)  (0.01)  (0.02)  (0.02)  (0.03)  (0.06)  (0.00)  (0.00)  (0.00)
0.03 0.01 -0.00  -0.03  -0.01 0.07 0.01 0.04 -0.13  -0.10  -0.35  -0.23

ETHANOL (0.00)  (0.01)  (0.02)  (0.02)  (0.03)  (0.10)  (0.03)  (0.04)  (0.14)  (0.21)  (0.21)  (0.39)
-0.01 0.01 0.05 -0.00  0.02 0.08 0.09 0.04 0.17 0.00 0.00 0.00

LUMBER (0.02)  (0.03)  (0.08)  (0.02)  (0.05)  (0.13)  (0.04)  (0.08)  (0.21)  (0.00)  (0.00)  (0.00)
-0.00  0.00 0.01 0.05 0.03 0.52 -0.04  -0.01 0.67 0.56 0.81 -0.43

LIVECATTLE (0.02)  (0.04)  (0.07)  (0.06)  (0.05)  (0.16)  (0.17)  (0.14)  (0.54)  (2.41)  (1.71)  (1.83)
0.01 0.09 0.31 0.00 -0.04  0.21 0.22 0.31 1.43 2.99 -0.04  -0.90

LEANHOGS (0.03)  (0.04)  (0.10)  (0.12)  (0.14)  (0.19)  (0.26)  (0.20)  (0.55)  (1.80)  (2.22)  (3.44)
-0.03  0.02 0.08 0.05 0.01 0.17 0.03 0.02 0.26 0.34 0.24 0.01

FEEDERCATTLE  (5.01)  (0.01) (0.02) (0.02)  (0.02)  (0.05)  (0.05)  (0.03)  (0.11)  (0.43)  (0.40)  (0.44)
-0.00  0.01 0.01 -0.02  -0.02  0.00 0.03 -0.01  -0.01 0.00 0.00 0.00

USDEUR (0.00)  (0.01)  (0.01)  (0.00)  (0.00)  (0.01)  (0.00)  (0.00)  (0.01)  (0.00)  (0.00)  (0.00)
-0.05  0.04 0.08 -0.01  -0.00  0.02 0.01 -0.03  0.03 0.00 0.00 0.00

ZARGBP (0.01)  (0.03)  (0.03)  (0.02)  (0.02)  (0.05)  (0.04)  (0.07)  (0.20)  (0.00)  (0.00)  (0.00)
0.01 0.01 -0.00  -0.00  -0.01  -0.00  0.00 0.00 -0.01 0.00 0.00 0.00

GBPEUR (0.00)  (0.00)  (0.01)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.01)  (0.00)  (0.00)  (0.00)
-0.05  0.04 0.04 -0.02  0.01 0.03 0.01 -0.06  0.03 0.00 0.00 0.00

ZARUSD (0.01)  (0.01)  (0.01)  (0.00)  (0.01)  (0.01)  (0.01)  (0.02)  (0.04)  (0.00)  (0.00)  (0.00)
-0.03  0.02 -0.01  0.00 0.00 0.00 -0.00  0.00 0.00 0.00 0.00 0.00

JPYUSD (0.00)  (0.01)  (0.01)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)
-0.01  -0.01 0.01 -0.01  -0.02  0.02 0.01 0.01 0.01 0.00 0.00 0.00

RENUSD (0.00)  (0.00)  (0.01)  (0.00)  (0.00)  (0.00)  (0.00)  (0.01)  (0.01)  (0.00)  (0.00)  (0.00)
0.01 -0.03  0.08 0.02 -0.01 0.01 -0.02  0.11 0.00 0.00 0.00 0.00

USINTR (0.02)  (0.04)  (0.06)  (0.03)  (0.05)  (0.06)  (0.03)  (0.07)  (0.06)  (0.00)  (0.00)  (0.00)
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EUINTR

SAINTR

UKINTR

JPINTR

CHINTR

SP500TSX60

FTSE100

-0.48
(0.06)

-0.20
(0.04)

-0.01
(0.00)

0.00
(0.00)

-0.06
(0.02)

-0.01
(0.00)

-0.02
(0.00)

-0.19
(0.12)

-0.09
(0.09)

-0.04
(0.01)

0.01
(0.01)

-0.02
(0.04)

0.02
(0.01)

0.03
(0.01)

0.58
(0.14)

0.40
(0.12)

0.03
(0.01)

0.01
(0.01)

0.05
(0.06)

0.04
(0.02)

0.05
(0.03)

-0.68
(0.05)

-0.31
(0.04)

0.11
(0.09)

0.01
(0.01)

-0.04
(0.02)

-0.00
(0.00)

-0.01
(0.01)

-0.54
(0.07)

-0.23
(0.07)

-0.25
(0.10)

0.00
(0.00)

-0.11
(0.04)

0.00
(0.00)

0.00
(0.01)

0.39
(0.10)

0.35
(0.09)

-0.39
(0.13)

0.02
(0.01)

0.02
(0.05)

-0.00
(0.01)

0.04
(0.05)

0.83
(0.06)

0.27
(0.05)

0.07
(0.09)

-0.01
(0.01)

0.09
(0.02)

-0.00
(0.00)

0.01
(0.02)

-0.34
(0.15)

-0.05
(0.09)

-0.53
(0.21)

0.01
(0.01)

0.10
(0.04)

-0.00
(0.00)

-0.01
(0.02)

0.41
(0.16)

0.41
(0.10)

0.40
(0.17)

0.03
(0.01)

0.03
(0.04)

-0.01
(0.02)

0.11
(0.21)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

Table 4: Component loadings for level, slope, curvature and seasonality factors
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Non-Regime Switching

Regime Switching

Component Diag VAR CVAR FCVAR FCVAR-OG RSFCVAR-OG RSFCVAR-OGM

L 4018.638  4010.820 4012.203  4274.291 4314.816 4431.828
GLO LR, 0.000 1.000 0.096 0.000 0.000 0.000

L 3057.168  3068.470  3040.458  3285.717 3282.048 3216.401
COM LR, 0.000 0.000 1.000 0.000 1.000 1.000

L 2167.301  2171.892  2190.021  2725.699 2866.797 2693.152
FIN LR, 0.000 0.002 0.000 0.000 0.000 1.000

L 3076.458  3082.519 3085.464  2848.062 2543.828 2879.110
ENE LR, 0.000 0.000 0.015 1.000 1.000 0.000

L 2225.004 2213.219 2228412  1994.807 2095.854 2198.392
MET LR, 0.000 1.000 0.000 1.000 0.000 0.000

L 2160.538  2143.805 2145.606  3513.031 3673.814 3602.652
GRA LR, 0.000 1.000 0.058 0.000 0.000 1.000

L 2655.370  2675.327  2679.610 2717.519 2932.087 2938.100
SOF LR, 0.000 0.000 0.003 0.000 0.000 1.000

L 3029.695 3024.042 3031.817 3666.757 3748.355 3694.890
LIV LR, 0.000 1.000 0.000 0.000 0.000 1.000

L 2757.695  2755.534  2767.369  3163.390 2424.060 2830.182
FEX LR, 0.000 1.000 0.000 0.000 1.000 0.000

L 3517.987 3521.230 3536.950  3937.453 3996.207 3944.632
BON LR, 0.000 0.011 0.000 0.000 0.000 1.000

L 1089.600 1064.085 1036.178  1143.612 1144.499 1160.232
EQT LR, 0.000 0.000 0.000 0.000 1.000 1.000

L 1574.418  1584.657 1590.112  2183.107 2252.260 2354.177
SEA LR, 0.000 0.000 0.001 0.000 0.000 0.000

Table 6: Diagnostics for alternative dynamic component specifications
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me.

Model-based term structures over t

Figure 2
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Selected model-based term structures over time and forward month.

Figure 3
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Figure 4: Selected model-based volatility term structures over time and forward month.
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Figure 10: Out-of-sample forecasting results (statistical measures).

59

3 o
e 8 e |9 18 18 18
©
:l++‘<0—MH-ﬁ—fl\.c wkﬂ{ﬂm%r\s e e N
+4 - - —
o o o
™ - o oo oo o "® < g "® < g < < g
IS N = S Ti (I\l o o S o o S o o S
1S9 Me|D abelano) ‘puod abelano) ‘puodun sisaylodAH dapu
+ + HHH & +4H+¢H4MF = 48 183 B 18
@ |
e Al e o (e (e S EEE
[ s L L
- s ! e ! — =
o o o
o - o oo ooo 2 ¥ g “2 ¥ g “* X g
SN RS IP= I RN c o 3 © o g o o 3
1SOM He|D abelano) ‘puo) abelano) ‘puodun sisaylodAH ‘dapu|
+ + i D +<M-+H+H-M> = %\«D«% %\«D«% = ﬁﬂ+g
—
o 4% ~c %W++ ~s H_H+M: H ﬁ—ﬂ{%v\s +$HHHHH+WH+I\-E
-
%H##%m\_, HFH-MMJFHT‘ +‘M—H1'WH+W>H +WH+W»\—4 + }«D«.—u
o S o oo ooo s < g 2 < g “* X g
IS 1S9\ He|D abelano) ‘puod abelano) ‘puodun sisaylodAH dapu|



Figure 11: Out-of-sample forecasting results (economic measures).
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