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Abstract

In this article we propose a dynamic factor framework for modeling and forecasting

financial and commodity term structures in a unified global setting. The novelty of our

approach is that it exploits a large set of information (i.e. data properties, time and forward

dimensions, and cross-country, market, sector and weather dimensions) summarized in a

set of heteroskedastic components that have a clear time series interpretation and that

can be modeled dynamically to generate forecasts in real-time. The approach is motivated

by evidence of rising financial integration, and interdependence between commodity and

asset markets. We employ a battery of in-sample and out-of-sample techniques to evaluate

our framework and concentrate on relevant statistical and economic performance measures.

To preview our results with practical implications, we find that our framework provides

significant in-sample information in terms of product specific factors and commonalities

driving commodity and financial markets. Moreover, the specification proposed for modeling

the dynamics of financial and commodity term structures generates accurate out-of-sample

interval and point forecasts and leads to variance reduction when hedging a portfolio made

up of spot and futures contracts.
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1 Introduction

Modeling and forecasting term structures in financial and commodity markets is very impor-

tant for industry practitioners and policy makers. Appropriate methods that approximate term

structures -and thus the expected future path of financial and commodity prices- allow prac-

titioners to take better decisions, for instance, with respect to optimal portfolio holdings and

dynamic hedging strategies. Monetary authorities also benefit from information embedded in

financial and commodities term structures: forecasts of the future evolution of exchange rates,

asset prices, and commodity prices, are important inputs used by central banks when setting

policy interest rates (Rigobon and Sack, 2002; Bernanke, 2008).

In this article we propose a dynamic factor framework for modeling and forecasting financial

and commodity variables in a unified global setting. The novelty of our approach is that it

exploits a large set of information at the daily frequency (i.e. data properties, time and forward

dimensions as well as cross-country, market, sector and weather dimensions) summarized in

a set of heteroskedastic components that have a time series interpretation and that can be

modeled dynamically to generate forecasts on real time. We employ a battery of in-sample

and out-of-sample techniques to evaluate our framework and we concentrate on statistical and

economic performance measures relevant for decision makers (e.g. porfolio managers, central

bankers).

Our study is motivated by the fact that, to the best of our knowledge, no research has

been done so far that brings together a unified framework for modeling and forecasting financial

and commodity futures at the international level. Such a unified approach may be increasingly

important due to the degree of financial spillovers and interdependence, across borders, and

between asset classes (e.g., IMF (2016)). Commodity prices affect the demand for currencies

and equities of commodity exporters (e.g., Australia, Canada, Chile, Norway, South Africa);

and commodity currencies have been shown to help forecast commodity prices (Chen et al.,

2010). Rising commodity prices also raise the terms-of-trade and growth rates of commodity-

rich economies; the associated increase in aggregate demand induces monetary policy tightening

under inflation-targeting regimes, raising bond market yields. Moreover, international financial

integration has contributed to an erosion of monetary policy independence, and strengthened the
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responsiveness of bond yields (particularly along the long end of the yield curve, in advanced and

emerging economies) to the global financial cycle, which is largely driven by monetary conditions

in the US (Rey, 2014; Obstfeld, 2015). Last but not least, growth spillovers (e.g., from China)

cause a degree of international co-movement in rates of output growth, and short-term interest

rates.

One of the most popular term structure modeling benchmarks (albeit in the interest rate

literature) is the Nelson and Siegel (1987) model which decomposes the term structure of interest

rates into three factors, namely, the level, slope and curvature of the yield curve. Diebold

et al. (2008) and Diebold and Li (2006) have extended the NS approach to incorporate other

global factors and time-series structures and have demonstrated its good forecasting capabilities

and its applicability for macroeconomic analysis (Diebold et al., 2006). Recent work has also

highlighted the good fit of the NS structure for commodity markets (Karstanje et al., 2015)

vis-a-vis other important benchmarks in the commodities pricing literature such as the seminal

work by Schwartz (1997) and Schwartz and Smith (2000).

In general, factor models have shown to be a promising avenue for modeling futures and/or

yield curves and to explain the variation of the macroeconomy (Ang and Piazessi, 2003; Cochrane

and Piazessi, 2005, 2008). This is not surprising as term structures contain important informa-

tion along the time and forward dimensions which are difficult to account for with large scale

macro models. Nevertheless, research on term structures is still in its infancy, in particular

studies that account for both financial and commodity markets in a unified approach.

A handful of studies have recently put forward models for commodity products at the daily

frequency with ‘real world’ applications such as hedging and portfolio allocation (Boswijk et al.,

2015; Cavalier et al., 2015; Dolatabadi and Nielsen, 2015; Dolatabadi et al., 2015). What seems

to be a common finding is that accounting for fractional cointegration, fits well the data in-

sample and out-of-sample. Previous studies have also found evidence of fractional cointegration

in daily equity and exchange rate dynamics which imply a dissipation of shocks to equilib-

rium relations only at long horizons; thus hinting at the promising applicability of fractional

cointegrated models for forecasting with data at higher frequencies (de Truchis, 2013; Baillie

and Bollerslev, 1994). Moreover, as shown both empirically and theoretically in the behavioral
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finance literature, regime-switching mechanisms can help explain the stylized features found

in financial data as well as adapt to structural breaks (Grauwe and Grimaldi, 2006; Huisman,

2009). However, to what extend the commonalities of financial and commodity markets can be

modeled via fractional cointegration dynamics as well as heteroskedasticity and regime-switching

features and their contribution to in-sample and out-of-sample information is, to the best of our

knowledge, not known. In this study we contribute to the rising literature on term structure

modeling by bridging commodities and financial markets in a unified framework that accounts

for important commonalities between these markets with realistic time-series mechanisms.

The specific contributions of our study are threefold. First, we extend the NS-type structure

to account for stochastic seasonalities which are important determinants of some commodity

markets (e.g., gas, gasoline, livestock, grains, etc). Moreover, we adapt the model to incorporate

global, market, sector and idiosyncratic components by introducing commonalities that account

for the effects of different countries, financial and commodity markets, alternative sectors (i.e.

oil and gas, metals, foreign exchange, equity, bonds) and idiosyncratic (i.e. product) specific

shocks. Bond market yields have a strong ‘global’ commonality; and commodities, exchange

rates, and equities are driven by demand and supply conditions which have a strong global

spectrum. Thus the importance of modeling all the markets and sectors considered here in a

unified setting.

Second, we propose a Regime-Switching Fractional Cointegrated VAR with Orthogonal

GARCH-in-mean errors (RSFCVAR-OGARCH-M) to model the dynamics of the global, market,

sector and seasonalities at the daily frequency. The latter specification accounts for many ‘styl-

ized facts’ of financial and commodity markets data at the daily frequency, namely, jumps, lep-

tokurtosis, (conditional) heteroskedasticity, fractional integration, amongst others (Lux, 2009;

Huisman, 2009). This is important as market practitioners deal daily with hedging decisions

of financial and commodity products and policy authorities study the daily effects of monetary

policy on term structures (e.g. yield curves) so that an appropriate framework should account

for characteristics in data dynamics as close as possible.

Third, we adopt a battery of in-sample and out-of-sample analyses that should allow prac-

titioners not only to extract useful and relevant information in real-time (e.g., variance term
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structures, variance decompositions, macroeconomic mapping) but also to generate and evaluate

point and density forecasts of crucial financial and commodity variables.

The article is organized as follows. The next section describes the model. Section 3 discusses

the data and estimation approach and Section 4 the forecasting methodology. Section 5 and

Section 6 are devoted to discussing the results and our final remarks, respectively.

2 The model

The model is based on previous work by Nelson and Siegel (1987), Diebold et al. (2008), Diebold

and Li (2006), Karstanje et al. (2015) and Boswijk et al. (2015). We consider the NS structure

which is extended to incorporate seasonality components found in commodity markets such as

natural gas, gasoline, some grains and livestock, amongst others:

zit(τ) = lit + Λs(λit, τ)sit + Λc(λit, τ)cit + Λf (κit, cos(τ, η), sin(τ, η))fit + εit(τ). (1)

In the above expression zit(τ) = lnZit(τ) is used to denote the natural logarithm of the futures

price of product i = 1, ..., N at day t = 1, ..., T and forward month τ = 1, ..., T , lit is the so-

called level factor, sit is the slope factor, cit is the curvature factor, fit is the seasonality factor

introduced for our framework and εit(τ) is a ‘measurement error’.

The base loadings Λs(•),Λc(•),Λf (•) quantify the loads of the slope, curvature and seasonal-

ity along the forward dimension. In principle, the latter loadings can take alternative analytical

forms, for instance, cublic spline loadings (Wold, 1974; Suits et al., 1977). In our context, the

base loadings are given by:

Λs(λit, τ) =
1− e−λitτ

λitτ
, (2)

Λc(λit, τ) =
1− e−λitτ

λitτ
− e−λitτ , (3)

Λf (κit, cos(τ, η), sin(τ, η)) =
κit [1− cos(ητ) + sin(ητ)]

2ητ
, (4)

where λit is the so-called maturity parameter which quantifies the steepness and the shape of the
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term structure. More precisely, the latter parameter can be interpreted as the ‘mean reversion’

rate of the slope and curvature factors. Moreover, we introduce the trigonometric funtions cos(·)

and sin(·) which allow us to incorporate a cyclical effect along the forward dimension of the

term structure with time-varying amplitude given by κit and constant number of cycles with

respect to the forward month τ given by η = 2π3−1.1 To illustrate the latter functions, Figure 1

displays the behavior of the above base loadings for fixed (estimated) parameter values of λi

and κi for the products considered.

The commonalities of the level, slope, curvature and seasonality factors are modeled by

means of the following factor decomposition for each product i at day t:

lit = l̄i + γgl,iLg,t + γml,iLm,t + γnl,iLn,t + εl,it, (5)

sit = s̄i + γgs,iSg,t + γms,iSm,t + γns,iSn,t + εs,it, (6)

cit = c̄i + γgc,iCg,t + γmc,iCm,t + γnc,iCn,t + εc,it, (7)

fit = f̄i + γuf,iFu,t + γvf,iFv,t + γwf,iFw,t + εf,it, (8)

where Lg,t, Sg,t, Cg,t denote

the global components g = {global} ={glb}, the variables Lm,t, Sm,t, Cm,t denote the mar-

ket components m = {commodities,financial} = {com,fin} and Ln,t, Sn,t, Cn,t denote the sec-

tor components n = {energy,metals, softs, grains, livestock, foreign exchange, bonds, equity} =

{ene,met, sof, gra, liv, forex,bon, eqt} of the level, slope and curvature factors, respectively.2

Moreover, Fu,t, Fv,t, Fw,t denote the components driving the stochastic behavior of the season-

ality factors (e.g. weather). Finally, the components ε•,it for • = l, s, c, f are the idiosyncratic

shocks of the level, slope, curvature and seasonality factors. In the above decomposition, we

assume that the components per factor (global, market, sector and idiosyncratic) are uncorre-

lated.

The dynamics of Lj,t, Sj,t, Cj,t for j = g,m, n and Fj,t for j = u, v, w are modeled by

1We derive the seasonality specification in (4) by integrating the function f(τ, κi) = κ1,i sin(ητ) +κ2,i cos(ητ)
forward over [0, τ ] and dividing the result by τ to remain along the lines of the original NS derivation. To reduce
on the number of parameters to be estimated we assume κ1,i = w1κi, κ2,i = w2κi with w1 = w2 = 1/2 a weighting
factor and κi the amplitude parameter.

2‘Global’ component is taken here as a common component amongst all products and country specific markets.
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means of the following Regime-Switching Fractionally-Cointegrated VAR process with Orthog-

onal GARCH-in-mean (FCVAR-OGARCH-M) innovations:

∆dj,rtXj,t = αj,rtβ
′
j,rt∆

dj,rt−bj,rtΥj,bj,rt
Xj,t +

P∑
p=1

Γpj,rt∆
dj,rtΥp

j,bj,rt
Xj,t

+ ζj � diag(Hj,t) + ξj,t, (9)

ξj,t ∼ N(0, Hj,t), (10)

Hj,t = BjEt
[
uj,tu

′
j,t|It−1

]
B′j = BjΩj,tB

′
j , (11)

Ωj,t = (I3 − diag(θj)− diag(δj)) + diag(θj)� Ωj,t−1 + diag(δj)� uj,t−1u
′
j,t−1, (12)

where the vector Xj,t is given by Xj,t = [Lj,t, Sj,t, Cj,t]
′ for j = g,m, n or Xj,t = [Fu,t, Fv,t, Fw,t]

′

for j = f . In (9), ∆d is the fractional difference operator (ignoring regime-switching) and

Υj,b = 1−∆b is the fractional lag operator. Following Johansen and Nielsen (2012) a time series

is said to be fractional of order d, denoted Xt ∈ I(d), if ∆dXt is fractional of order zero, that is if

∆dXt ∈ I(d). A k-dimensional time series Xt ∈ I(d) is said to be fractionally cointegrated when

one or more linear combinations are fractional of a lower order, that is, when a k × r matrix β

exists such that β′Xt ∈ I(d− b) with b > 0. In addition, the matrices α and Γ are the loadings

of equilibrium adjustment and of short-run dynamics, respectively. The reason for employing a

FCVAR structure here is that at higher frequency of the data, equilibrium relations may exhibit

long-memory and accounting for this feature can have important practical implications for, e.g.

hedging, as found in various studies (Brunetti and Gilbert, 2000; Dark, 2007; Coakley et al.,

2008). Although findings on fractional cointegration with daily data have not been categorized

as ‘stylized facts’ per se, they seem to be the rule rather than the exception when cointegration

is in fact present.

By introducing two regimes rt = 1, 2, we assume that the FCVAR definitions apply but at

different degrees over time. We opt for a specification with regime-switching for three main

reasons. First, regime-switching mechanisms can account for structural and/or random breaks

in the data due to, for instance, changes in investor preferences, which can affect the (parameter)

stability of a particular model. Second, given that the proposed unified framework accounts

for different common components (global, market, sector and weather), we can expect a certain
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degree of heterogeneity amongst the commonalities, so that a model with regime-switching

can potentially ‘absorb’ such heterogeneity. Third, regime switching features can approximate

jumps which are usually found in data of commodity and financial markets (see e.g., Lux (2009);

Huisman (2009)).

In the above specification, the covariance of the error process ξj,t is given by Hj,t for

j = g,m, n, f and is conditional on the information set It−1. We assume that the condi-

tional covariances Hj,t follow Orthogonal GARCH (OGARCH) processes. We also allow for the

variances in Hj,t to have an effect on the conditional mean of Xj,t so that the coefficients in

the 3 × 1 vector ζj can be interpreted as the ‘price’ of common components risk with � the

element-by-element (Hadamard) multiplication operator. In addition, considering volatility-in-

mean is advantageous as it may price uncertainty and risk in the common components as well

as approximate arbitrage-free models with volatility-in-mean applicable to derivative pricing

(Duan, 1995; Ludvigson and Ng, 2007; Bollerslev et al., 2008).

Last but not least, another advantage of (10) is that it is general enough to account for other

popular specifications. For instance, with drt = brt = 1 and αrt = 0, the model is a VAR in

first differences, with drt = brt = 1 and αrt = α < 0 the model is a Cointegrated VAR (CVAR)

and with drt = d, brt = b and αrt = α < 0 the model becomes a Fractional Cointegrated VAR

(FCVAR). By considering a general model with various embedded specifications, we can vary

the structure on the set of components at hand (e.g. financial vs. commodities, vs. weather,

etc).

For the idiosyncratic components ε•,it, • = l, s, c, f , we assume simple heteroskedastic au-

toregressive models of order one, i.e.

ε•,it = φ•,iε•,it−1 + a•,it, a•,it ∼ N(0, ω•,it), (13)

where ω•,it follow GARCH(1,1) processes. Similarly, the measurement errors follow het-

eroskedastic autoregressive processes of order one:

εit(τ) = ϕi(τ)εit−1(τ) + %it(τ), %it(τ) ∼ N(0, υit(τ)), (14)
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υit(τ) follow simple GARCH(1,1) processes. Moreover, we assume that the shocks a•,it and %it(τ)

are uncorrelated across i’s, i.e. we assume a diagonal (co)variance structure for these quantities

are given by Dt = diag([ωl,1t, ωs,1t, ..., ωc,Nt, ωf,Nt]) and Vt = diag([υ1t(1), υ1t(2), ..., υNt(T −

1), υNt(T )]), respectively.3 The full model can be represented compactly in state-space form,

i.e.

Zt = K + ΠXt + Et, (15)

Xt|It−1 ∼ N(0, Qt), (16)

Et|It−1 ∼ N(0, Vt), (17)

where Zt = [z1t(1), ..., z1t(T ), z2t(1), ..., z2t(T ), ..., zNt(1), ..., zNt(T )]′,

Xt = [Lglb,t, Sglb,t, Cglb,t, ..., Lfin,t, Sfin,t, Cfin,t, ..., Lmet,t, Smet,t, Cmet,t, ..., Fu,t, Fv,t, Fw,t, ...,

εl,Nt, εs,Nt, εc,Nt, εf,Nt]
′ and Et = [ε1t(1), ..., ε1t(T ), ε2t(1), ..., ε2t(T ), ..., εNt(1), ..., εNt(T )]′.

Moreover, K is a N · T vector of constants, Π is a N · T × 204 matrix of coefficients with

Qt and Vt the conditional covariances of Xt and Et, respectively. More details about the func-

tional form of the above state-space representation can be found in the Appendix.

3 Data and estimation

3.1 Data description

Term structure data is obtained mainly from Bloomberg and in some particular cases from

Datastream. Table 1 summarizes the data collected and the specific sources. We employ

monthly rollover futures series for 36 months at the daily frequency starting from 2010-10-

01 and ending on 2015-09-30.4 The sample period chosen was based on data availability and

covering up to eight (8) ‘seasonality years’.5 As it is usually the case, some products had the full

3While one could argue that the product and seasonality specific shocks or measurement errors might exhibit
more complex dynamic structures, previous studies have used similar specifications (albeit for monthly data) and
have demonstrated that such simple structures work well in-sample and out-of-sample (Diebold and Li, 2006).
In our context, given our large scale model we opt for simple specifications for the idiosyncratic shocks to keep
our estimations tractable.

4Note that 3 years × 12 months = 36 months ÷ 6 months = 6 cylces/seasons for the seasonality along the
forward dimension τ

5A seasonal year is defined here as one that starts on October 1st and ends in September 30th, commonly
known in the gas and power industry as a ‘gas year’.
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36 forward months available (e.g. gas and oil, softs and grains) while others had intermittent

data over the 36 forward months (e.g. exchange rates, bonds and some metals). We have

interpolated weekends and holidays for simplicity as weekend data were not available for many

of the products under consideration.6

The data employed for the analyses at the monthly frequency, i.e. the data used for the

mapping of the extracted components to macroeconomic factors (as will be explained below),

are mainly obtained from Datastream and the World Bank Database with some exceptions

which were obtained from the Haver. We collected macroeconomic data at the country level

for a balanced panel of 19 countries for the same period as for the futures data, i.e. 2010-10 and

ending on 2015-09. All groups of macro data contain the main industrialized economies (G7)

and the main emerging markets (BRICS) amongst others. Detailed information about the data

is provided in Table 1.

3.2 Model estimation

The model described in the preceding section considers time, cross-section and forward dimen-

sions along with a heteroskedastic and regime-switching dynamic specification of the common

components. While the model (or a restricted version of it) could in principle be estimated by

means of the so-called ‘first generation’ dynamic factor approaches (e.g., Kalman-Nelson-Kim

filter given its linear-Gaussian state-space representation) or Bayesian techniques, a large pa-

rameter space renders such estimation approaches computationally cumbersome in particular

when forecasting exercises are at hand. Given that we are dealing with quite a large-scale

model, we opt for the ‘third generation’ approach as detailed in Stock and Watson (2011)

whereby parameters and factors/components of the model are estimated in various steps, and

the state-space representation is subsequently employed for in-sample and out-of-sample anal-

yses. This approach reduces computational time for forecasting and allows for more general

dynamic specifications as opposed to (say) simpler autoregressive models as is the case in other

applications.7

6We have also employed business days as opposed to interpolated weekend data and the results do not differ
qualitatively. We decided for interpolation in order to smooth out any weekend effects out of the analysis.

7In fact, Diebold and Li (2006) show that k-step estimation approaches within the NS framework that are
relatively easy to implement have the advantage that they can be succesfully applied for forecasting without much
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In what follows we describe the main steps of the base estimation approach considered here.

Additional details can be found in the Appendix of this article.

1. The first step consists of estimating a product’s level, slope, curvature and seasonality

factors lit, sit, cit, fit as well as the maturity and amplitude parameters λit and κit in

equation (1) by means Bayesian Averaging (BAV) based on various procedures which

are summarized in Table 2 along with their advantages and disadvantages. Note that

by employing BAV based on different estimation approaches (Non-linear Least Squares,

Ordinary Least Squares, Generalized Least Squares) and alternative specifications of the

maturity and amplitude parameters (e.g., time-varying product vs. constant product

vs. time-varying sector vs. constant sector) we should reduce uncertainty in the factor

estimates (Hoeting et al., 1999).

2. The second step consists of estimating the factor decomposition in (5)-(8). We start

by standardizing the BAV estimates of the level, slope, curvature and seasonality factors

denoted l̂BAVit , ŝBAVit , ĉBAVit and we employ principal component analysis (PCA) to identify

the common components by sequentially (i) extracting the estimated global components

L̂g,t, Ŝg,t, Ĉg,t from the factors along time and cross-section dimensions, (ii) regrouping

the residuals into financial and commodity markets and extracting the corresponding

financial and commodity estimated components L̂m,t, Ŝm,t, Ĉm,t from each market, (iii)

regrouping the residuals into sectors (energy, metals, etc) and extracting the estimated

sector components L̂n,t, Ŝn,t, Ĉn,t from each sector. The seasonality components F̂ut,

F̂vt, F̂wt are the three first principal components of the seasonality factors f̂BAVit obtained

along both time and cross-section dimensions. Given the estimated common components

L̂j,t, Ŝj,t, Ĉj,t for j = g,m, n and F̂u,t, F̂v,t, F̂w,t we employ system Generalized Method of

Moments (GMM) to (re)estimate the parameters in (5)-(8) for all i = 1, ..., N . We employ

one lag of the component estimates as instruments and a Newey-West HAC covariance

as weighting matrix. The idiosyncratic component estimates ε̂•,it for • = l, s, c, f are the

computational burden. Similar findings on the out-of-sample applicability of multi-step estimation are provided
by Caldeira et al. (2015, 2016). For a deeper discussion on the advantages and disadvantages of alternative
dynamic factor modeling approaches, we refer the reader to Stock and Watson (2011) and leave the comparison
between alternative estimation methods for future research.
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residuals resulting from the GMM system regression.

3. The third step consists of estimating the RSFCVAR-OGARCH-M model in (10)-(12) (or

restricted versions) for the global, market, sector and seasonality common components

by means of (concentrated) Maximum Likelihood (ML). The likelihood function for j =

g,m, n, f is given by

Lj =
∑
t∈T

log
[
π

(1)
j,t · N (Yj,t|rt = 1) + (1− π(1)

j,t ) · N (Yj,t|rt = 2)
]
, (18)

where π
(1)
j,t = P(rt = 1|It−1) is the probability of regime 1 conditional on the information

set I at period t− 1, N (·|rt = r) is the conditional Normal distribution given that regime

r = 1, 2 occurs at time t for Yj,t = Xj,t|It−1. We employ the Hamilton Filter (HF) in order

to approximate the conditional probabilities π
(1)
j,t and the contribution of N (·|rt = r) to

the likelihood for each regime r = 1, 2. Note that we account for different versions of (9),

whose restrictions are found in Table 3 and for which the HF is not needed.

4. The fourth and last step consists of estimating (13) and (14) by employing the idiosyncratic

component estimates ε̂•,it obtained from the GMM residuals in step two and the measure-

ment error estimates ε̂it(τ) obtained from Êt = Zt − Π̂X̂t in (15) and employing ML to

estimate the autoregressive and GARCH(1,1) parameters for each i and τ . In this case, the

likelihoods reduce to Li =
∑

t∈T log [N (ε̂•,it|It−1)] and Li(τ) =
∑

t∈T log [N (ε̂it(τ)|It−1)],

respectively.

Once the parameters of the model have been estimated, we employ the state-space representation

in (15)-(17) to conduct various in-sample and out-of-sample analyses which are described in the

following sections.

4 In-sample analysis

4.1 Variance decompositions

The factor decomposition of our model presented in Section 2.1 provides an excellent platform

for analyzing the contribution of each of the common components to explaining the percentage
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variation in the variance of the level, slope, curvature and seasonality factors of the term struc-

tures considered. Since our model accounts for conditional variances, we can decompose the

variance contributions of the components at every point in time. For the purpose of this study

we consider the following factor decompositions in percentage terms:

1 = V̂ar%,iµ [Lg,µ] + V̂ar%,iµ [Lm,µ] + V̂ar%,iµ [Ln,µ] + V̂ar%,iµ [εl,iµ] ,

+ V̂ar%,iµ [Sg,µ] + V̂ar%,µ [Sm,µ] + V̂ar%,iµ [Sn,µ] + V̂ar%,iµ [εs,iµ] ,

+ V̂ar%,iµ [Cg,µ] + V̂ar%,iµ [Cm,µ] + V̂ar%,iµ [Cn,µ] + V̂ar%,iµ [εc,iµ] ,

+ V̂ar%,iµ [Fk,µ] + V̂ar%,iµ [Fv,µ] + V̂ar%,iµ [Fw,µ] + V̂ar%,iµ [εf,iµ] , (19)

where µ = 1, ..., Tµ is used to denote a particular month whereby t ∈ µ and V̂ar%,µ [•] is the

average percentage variance contribution of component • = Lg,µ, Lm,µ, ... over month µ. We

aggregate the daily decompositions at the monthly level for two main reasons. First, in practice

most macroeconomic analyses are performed at the monthly, quarterly or yearly frequencies.

Second, by aggregating at the monthly level we can reduce ‘noise’ that may occur at the daily

level due to volatility ‘jumps’ while conserving the overall trends in the percentage variance

contributions.

4.2 Macroeconomic mapping

As mentioned previously, several studies have documented the strong explanatory power of

term structure factors vis-a-vis the macroeconomy (Ang and Piazessi, 2003; Diebold et al.,

2006; Cochrane and Piazessi, 2008). Our study takes this type of analyses forward by mapping

the estimated global, market and sector components of the level, slope and curvature factors

obtained from commodities and financial term structures to the macroeconomy. Note, however,

that in the case of a macroeconomic analysis at the monthly level, the large dataset considered

here and relatively few data points at the monthly frequency (60) makes it impossible to use

all country specific data in single regression models. Thus, we aggregated all country informa-

tion in a set of common factors obtained from each of the categories of macroeconomic data

(consumption, consumer prices, industrial production, etc) as detailed in Table 1. The factors
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are computed by means of PCA, and we chose the number of principal components based on

the percentage variance explained which we truncated to 95%.8 Specifically we consider the

following model:

∆12Xj,µ = Φj∆
12Mµ + Ej,µ, (20)

where ∆12 denotes the year-on-year (yoy) difference operator Xjµ =
[
L̂jµ, Ŝjµ, Ĉjµ

]′
is the

vector of yoy changes of the estimated level, slope and curvature components for j = g,m, n

at month µ, Mµ =
[
ĈPI1µ, ĈP I2µ, ..., ÊMP 1µ, ÊMP 2µ

]′
is the vector of yoy changes of the

estimated macroeconomic components, Φj is a matrix of macroeconomic loadings and Ej,µ is a

vector of measurement errors.9 To correct for possible endogeneity in the regressors, as well as

heteroskedasticity and autocorrelation in the measurement errors we employed system GMM

estimation with one lag of the factors as instruments and an estimate of the inverse of the

Newey-West HAC covariance as weighting matrix.

5 Forecasting Methodology

In the following subsections, we describe the forecasting strategy designed for this study. In

order to save on space, we concentrate on the most relevant issues. Specific details that are not

described here or in the Appendix to this article can be provided upon request.

5.1 Forecasting design

We employ a forecasting scheme whereby we estimate all parameters needed to ‘calibrate’ the

state-space representation in (15)-(17) with in-sample data up to time t = 1, ..., T̃ and obtain

multi-step ahead forecasts T̃ + h, T̃ + h + 1, ... for horizons h = 1, 7, 30, i.e. daily, weekly and

monthly (the most frequently used horizons in practice). The chosen set of out-of-sample dates

8Nevertheless, in some cases the later procedure resulted in too many factors relative to the data points
available. Thus, we truncated the number of factors to two (2) when more than two factors were needed to reach
the 95% cumulative variance threshold.

9The variables in Mµ are all in logs except for interest rate data and inventory changes.
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run from 10/2014 to 09/2015. Formally, forecasts are computed as

Ẑt+h|t = K̂ + Π̂X̂t+h|t + Êt+h|t, (21)

Σ̂t+h|t = Π̂Q̂t+h|tΠ̂
′ + V̂t+h|t. (22)

In order to illustrate the forecasting procedure in the following discussion, we concentrate on

general concepts and refer the reader to the Appendix for other details. In our context, we

have two regimes rt = 1, 2 embedded in the full dynamic specification in (9). That is, forecasts

generated from (9) apply for each of the regimes with corresponding parameters dr, br, βr, αr,Γ
p
r

for r = 1, 2. More precisely, forecasts X̂j,t+h|t =
[
L̂j,t+h|t, Ŝj,t+h|t, Ĉj,t+h|t

]′
for j = g,m, n or

X̂j,t+h|t =
[
F̂u,t+h|t, F̂v,t+h|t, F̂w,t+h|t

]′
for j = f are computed as

X̂j,t+h|t = π̂
(1)
j,t+h|t · X̂

(1)
j,t+h|t + (1− π̂(1)

j,t+h|t) · X̂
(2)
j,t+h|t, (23)

where X̂
(r)
j,t+h|t for r = 1, 2 are the forecasts corresponding to each regime and π̂

(r)
j,t+h|t is an

estimate of the conditional regime-switching probabilities at horizon h. Note also that multi-

step ahead forecasts Ĥj,t+h|t can be obtained recursively so that they can be applied for the

GARCH-in-mean estimates or as input for the conditional covariance matrix Q̂t+h|t in (22).

In the case of the measurement errors in (14) and idiosyncratic components in (13) it is

relatively straightforward to obtain multi-step ahead forecasts ε̂•,it+h|t and ε̂it+h|t(τ) as these

quantities follow simple autoregressive processes. The same applies for the conditional variance

forecasts ω̂it+h|t and υ̂it+h|t(τ) which assume GARCH(1,1) processes and whose multi-step ahead

specifications are well-known (Tsay, 2010). The term structure forecasts that result from (21)

conditioned upon X̂t+h|t and Êt+h|t are given by:

ẑit+h|t(τ) = l̂it+h|t + Λs(λ̂i, τ)ŝit+h|t + Λc(λ̂i, τ)ĉit+h|t

+ Λf (κ̂i, cos(τ, η), sin(τ, η))f̂it+h|t + ε̂it+h|t(τ). (24)

Analogously, the volatility term structures that result from (22) conditioned upon Q̂t+h|t and
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V̂t+h|t are given by

V̂art [zit+h(τ)] = V̂art [lit+h] + Λs(λ̂i, τ)2 · V̂art [sit+h] + Λc(λ̂i, τ)2 · V̂art [cit+h] ,

+ Λf (κ̂i, cos(τ, η), sin(τ, η))2 · V̂art [fit+h]

+ 2Λs(λ̂i, τ)Ĉovt [lit+h, sit+h] + 2Λc(λ̂i, τ)Ĉovt [lit+h, cit+h]

+ 2Λf (κ̂i, cos(τ, η), sin(τ, η))Ĉovt [lit+h, fit+h]

+ 2Λs(λ̂i, τ)Λc(λ̂i, τ)Ĉovt [sit+h, cit+h]

+ 2Λs(λ̂i, τ)Λf (κ̂i, cos(τ, η), sin(τ, η))Ĉovt [sit+h, fit+h]

+ 2Λc(λ̂i, τ)Λf (κ̂i, cos(τ, η), sin(τ, η))Ĉovt [cit+h, fit+h] + V̂art [εit+h(τ)] ,(25)

where V̂art [•] and Ĉovt [•] are estimated (co)variances conditional on information available up

to period t.10

Ideally, we could estimate the model up to its forecasting origin and roll the estimation

to the next forecasting origin and so on, i.e., we could employ a rolling window (or recursive)

scheme for the estimation of parameters and subsequent forecasting. However, in our context,

rolling (or recursive) estimation is cumbersome due to the large scale model under consideration.

Instead, we have broken down the analysis into three sample periods for estimation (10/2010-

09/2012, 10/2012-09/2013, 10/2010-09/2014) and used a Jacknifing procedure first introduced

by Quenouille (1956) and employed empirically and in Monte Carlo simulation settings more

recently by other studies (Chiquoine and Hjalmarsson, 2009). The Jacknife estimator of our

model(s) is given by

Ψ̂rt,Jack =
S
S − 1

· Ψ̂rt,T̃
−
∑S

l=1 Ψ̂rt,l

S2 − S
. (26)

where, S is the number of consecutive subsamples and Ψ̂rt,T̃
, Ψ̂rt,l are the vectors of estimated

parameters for the full sample T̃ and the l-th subsample. The above estimator has been shown

to reduce the bias induced by estimating parameters when using a limited number of calibration

10Note that in the expressions in (24) and (25) we assume constant estimates λ̂i and κ̂i as opposed to their time-
varying versions. This is done because the time-varying case would imply assuming and estimating a dynamic
specification for λ̂it and κ̂it which is out of the scope of this paper. Thus, for the purpose of this study we use
the mean of the BAV estimates λ̂BAVit and κ̂BAVit up to the forecasting origin for subsequent forecasting.
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windows instead of, e.g., rolling (or recursive) estimation schemes.11 Moreover, in our context

we are assuming time variability (i.e. regime-switching) in some parameters of the model so

that, together with the Jacknifing approach, should help us circumvent the drawbacks of not

employing a rolling (or recursive) estimation scheme.

As mentioned previously, some restricted versions of (9) might fit some components better

than others, i.e. there could be a certain degree of heterogeneity with respect to global, market

or sector specific data dynamics. In order to reduce model uncertainty we employ Bayesian

averaging of the parameters obtained from the restricted versions considered of the dynamic

specification in (9).12

5.2 Forecast evaluation

We employ a battery of tools to evaluate the out-of-sample performance of the proposed frame-

work. We focus on statistical and economic performance measures that aim to uncover the

accuracy of point and interval forecasts of the dynamic specifications as well as the hedging

performance within a portfolio of spot and futures contracts.

5.2.1 Statistical performance measures

Let M and Mb indicate a particular competing model and the benchmark, respectively. Our

benchmark model is the random walk model for the factors. We chose this specific benchmark

since the random walk model is the most widely used benchmark in practice to forecast the evo-

lution of financial prices an other assets (Grauwe and Grimaldi, 2006). The average performance

Mc relative to Mb for each product i is computed as

dri(M) =
d̄i(Mc)

d̄i(Mb)
, (27)

11We have also experimented with rolling-window and recursive schemes for estimation of parameters and sub-
sequent forecasting with a smaller version of the model. However, rolling estimations of some of the specifications
estimated with the Hamilton filter were very time consuming and the results were qualitatively not better than
with a few sample windows and the Jacknifing procedure. Indeed, the latter corroborates findings by Chiquoine
and Hjalmarsson (2009)

12We experimented with combining forecasts directly with different forecast combination routines but the
results turned out to be qualitatively similar to Bayesian averaging of the parameters in some cases and not
better statistically in other cases.
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where d̄i(Mb) and d̄i(Mc) are defined as the average MSE of the benchmark and of the com-

peting model, respectively. There are several tests available to analyze, whether a particular

benchmark model Mb has the same predictive ability as a competing model Mc, against the

alternative that modelMb has a better predictive ability based on Mean Squared Errors (MSE)

(Diebold and Mariano, 1995; Harvey et al., 1997; Clark and West, 2007; McCracken, 2007). In

this study we employ the test proposed by Clark and West (2007), which corrects the non-

standard limiting distribution under the null of equal forecasting accuracy to a nested model.

Moreover, we test interval forecasts generated from the model by means of the three-step pro-

cedure proposed by Christoffersen (1998) which evaluates whether interval forecasts satisfy the

so-called (i) unconditional, (ii) conditional and (iii) independence hypothesis.13

5.2.2 Economic performance measures

We test the economic significance of the futures forecasts by ‘simulating’ a dynamic hedging

strategy whereby an agent enters into a spot position and into a futures contract position with

the aim to reduce the variability of his/her portfolio’s value. That is, the agent seeks to minimize

the variance of his/her portfolio by chosing an optimal amount of futures position per unit of

spot position. The set up is very similar to the one found in previous studies where conditional as

opposed to unconditional moments are treated (Kroner and Sultan, 1993; Brunetti and Gilbert,

2000; Moschini and Myers, 2003). In our context, the minimization problem reduces to the

following hedge ratio:

HRit,h =
Covt [rit+h(1), rit+h(τ)]

Vart [rit+h(τ)]
, (28)

where rit(1) = zit(1)− zit−1(1) is the (log) return of the spot (month-ahead) product, rit(τ) =

zit(τ) − zit−1(τ) is the (log) return of the futures price at forward month τ for product i, and

Covt [·] and Vart [·] are the time-dependent (co)variances of rit(1) and rit(τ) conditional on

information available up to time t. Our benchmark model is a constant hedge ratio denoted

HRb,h obtained by replacing (28) with unconditional moments estimated up to the forecasting

13To save on space, we refer the interested reader to the Clark and West (2007) and Christoffersen (1998)
articles for details about the respective tests.
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origin.14 We evaluate the performance of the dynamic hedging strategy by means of the so-called

variance reduction measure:

VN i,h =

√
Var[rh,p]

Var[rbh,p]
− 1, (29)

where Var[rh,p] is the variance of the portfolio resulting from hedging with conditional moments

fitted from our model and Var[rbh,p] is the variance of the portfolio resulting from hedging with

the benchmark. Following Lee (2009a,b), in order to test the statistical significance of variance

reduction we use a test of predictive accuracy such as the Clark and West (2007) test.

6 Results

In what follows we discuss the in-sample results of our analysis and subsequently the out-of-

sample results. We opted to display our subsequent results in relevant figures that highlight the

main features of our modelling framework as far as possible as opposed to large tables for space

considerations. Detailed results not displayed here can be provided upon request.

6.1 In-sample results

Figures 5 and 6 display the results of the in-sample estimation for the parameters λit and κit

by means of BAV. The figures display the degree of heterogeneity for the maturity parameters

amongst the different products under inspection and this finding holds not only for commodity

markets but also for financial markets. This result indicates that when fitting such a NS-type

model with alternative markets, sectors and global data, it is advisable to estimate the maturity

parameter as opposed to ‘calibrate’ it as it is done in previous studies (Diebold and Li, 2006).

The latter result also confirms recent findings by Karstanje et al. (2015) who put forward a

non-trivial degree of heterogeneity in the maturity parameters of their commodities model. The

figures show not only that the maturity differs across products but that it varies with time in

14Note that we assume a ‘pair’ strategy for simplicity, i.e. we assume that the hedging is done with respect
to one of the futures contract with forward dimension τ and do not consider cross-commodity hedges. This is
indeed very interesting for practitioners but is out of the scope of this article.
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most cases as proposed by Koopman et al. (2010). Since the λit’s can be interpreted as the

mean-reversion rate of the slope and curvatures of the term structures, the heterogeneity and

time-variability of this parameter suggests that the ‘velocity’ and shape of adjustment into, say,

contango or backwardation of terms structures differs amongst products and over time. The

amplitude parameters also seems to be time dependent but the level of heterogeneity is not as

strong.

Figure 7 displays selected examples of the estimated level lit, slope sit, curvature cit and sea-

sonality fit factors of the products considered with four of the different estimation approaches

employed (OLSPRD, GLSPTV, OLSSEC, BAV). As can be noted from the figures, the ap-

proaches differ quantitatively (as expected) in some time periods but overall they exhibit similar

path profiles. In terms of the Bayesian weights computed, however, it appears as if the OLSPTV

and GLSPTV approaches provide more useful information in terms of Bayesian Information Cri-

teria (see Table 2 for further details). Figure 2 displays the fitted smoothed futures prices over

the time dimension for all the products considered. Moreover, Figures 3 and 4 show futures

price and volatility term structures over time and forward dimensions for selected examples of

the products considered. The latter figures show an interesting implementation of the model as

the model-based term structure data over several forward months can be employed for approx-

imating expectations of future price and volatility paths of the products considered every day

and for every forward month wished. This application is important for practitioners as for some

products only intermittent data is readily available at the daily and forward dimensions (e.g.

foreign exchange, equity futures, aluminium, etc) and practitioners use these data as inputs for

taking decisions (i.e. option pricing, hedging, etc).

Tables 4 to 8 show the in-sample estimation results of the component loadings, the long-

run and short-run parameter estimates of the RSFCVAR-OGARCH-M and some diagnostics

of the alternative dynamic specifications considered, respectively.15 The results of a likelihood

ratio test favors the heteroskedastic specification (FCVAR-OGARCH) vis-a-vis the homoskedas-

tic specifications (VAR, CVAR, FCVAR) for most of the component estimates. Similarly, we

find that the likelihood ratio test favors the heteroskedastic and regime-switching specifica-

15We only present the results of the full specification RSFCVAR-OGARCH-M to save on space. Detailed
estimation results for the restricted versions can be provided upon request.
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tions (RSFCVAR-OGARCH, RSFCVAR-OGARCH-M) over the heteroskedastic but non-regime

switching counterpart (FCVAR-OGARCH) for most component estimates. Parameters of the

RSFCVAR-OGARCH-M model are statistically significant for the most part except for some

cases, for instance, the volatility-in-mean parameters of some of the components (Table 7). The

latter result suggests that risk is not significantly ‘priced’ in the conditional mean (in a statistical

sense) in most components.16 In fact, previous studies that analyze the risk-return relationship

have found mixed results with respect to direction or statistical significance of the effect of

risk variables in the (conditional) mean of asset pricing models (Campbell and Hentschel, 1992;

Ludvigson and Ng, 2007; Bollerslev et al., 2008). Overall, we find that the dynamic specifica-

tions that account for fractional cointegration, regime switching and heteroskedasticity fit well

the data in-sample and are statistically better than their restricted and ‘simpler’ counterparts

(VAR, CVAR, FCVAR) for most components according to the in-sample diagnostics considered

(LR, BIC).

Figure 9 displays the variance decomposition of the factors for each product at each point

in time aggregated at the monthly frequency while Table 11 presents results aggregated over

the full sample and over sectors. We find that the global components can explain on average

about 20% of the variance of the factors across all products considered while the market, sector

and idiosyncratic factors can explain up to 20%, 20% and 30% respectively. With respect to

the seasonality components, we find that these variables can explain up to 5% of the variance

of the term structures while the seasonality idiosyncratic component explains up to 5%. While

it is not possible here to compare these results to previous studies directly as there are, to the

best of our knowledge, no one-to-one comparable models, we find that other studies have found

similar results on the contributions of global, sector specific and idiosyncratic components to

total variation in term structures (Diebold et al., 2008; Diebold and Li, 2006; Karstanje et al.,

2015). Moreover, it is worth noting that the results on previous studies hold ‘on average’ while

we show that the variance decompositions appear to be strongly time dependent as depicted in

Figure 9.

16An earlier (experimental) version of our model accounted for regime changes in the GARCH-in-mean pa-
rameters. However, the large parameter space made it very cumbersome computationally without some evident
forecasting gains. Thus, we decided for the simpler specification treated here.
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Table 9 and 10 show the mapping of the extracted components to macroeconomic factors

as introduced in Section 3. We find that the global components are related to variables such

as exchange rates, wages, price-earnings ratios, leading economic indicators, employment and

house prices. In turn, the market component of commodity products is related to variables such

as output growth, exchange rates, volatility of exchange rates, business confidence, amongst

others while the market component of financial products is explained by inflation, dividend

yields, wages and terms of trade. The bond component is related to variable such as term

spreads, wages, employment and house prices amongst others. The foreign exchange component

is related to exchange rates, business confidence, leading economic indicator, term spreads,

amongst others. The equity component is related to leading economic indicators, PE ratios and

wages, amongst others.

The energy component is related to business confidence, exchange rates, volatility, house

prices, amongst others. The metals component is related to output growth, exchange rates,

leading economic indicators, consumption, amongst others. Other commodity sector compo-

nents (grains, livestock and softs) are related to macroeconomic factors of the energy sector in

general. Our results follow the same line of previous studies where unobservable components in

financial and commodity prices can be successfully mapped to the U.S. macroeconomy (Fama

and French, 1987, 1988; Ang and Piazessi, 2003; Diebold et al., 2006). Our study takes the

mapping one step forward as we show that the world, market and sector commonalities of fi-

nancial and commodity term structures have information that can ‘replicate’ movements in the

macroeconomy in an international context.

Overall, we find that the dynamic specifications proposed for the components fit the data

well in-sample. We also find some degree of heterogeneity amongst model specifications within

alternative components which hints at the possibility that ‘hybrid’ specifications obtained trough

combined models (e.g. through Bayesian averaging) might reduce forecasting uncertainty. More-

over, we uncover an economic and statistical significant relationship of the unobservable com-

ponents to the macroeconomy which suggests that these variables might serve as complement

or alternative to macroeconomic data at lower (e.g. monthly) or higher (e.g. daily) frequen-

cies. What degree of predictability power these components have at the daily frequency will be
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uncovered in the next section.

6.2 Out-of-sample results

In this section we discuss the out-of-sample results. We start by discussing the results of the

statistical performance measures and subsequently the economic performance measures.

As discussed in Section 4.1, we perform evaluations with alternative tests that aim to ana-

lyze different features of the out-of-sample forecasts generated by our model. Given the large

set of forecasts generated by our model (cross-section, time and forward dimension) we have

summarized the results of our various tests in boxplots which are displayed in figures 9 and

10. The boxplots show the tests aggregated over the cross-section dimension for multi-step

ahead horizons h = 1, 7, 30 (daily, weekly, monthly) and for the forward dimensions τ = 1, 3, 6

(month-ahead, quarter-ahead and semester-ahead).

In terms of forecasting accuracy by means of the Clark and West test, we find that many

products generate forecasts that are statistically better than those of a random walk type model.

However, we find that at the aggregate level the forecasting accuracy of the model is only slightly

better than the random walk specification when observing the median of the distribution of test

statistics. The latter result is in line with the relative MSE results which show that the model

generates more accurate forecasts than a random walk benchmark for various products but at

the aggregate level, relative MSE are only slightly better at higher horizons as shown by the

median of the distribution.

Interestingly, however, we find that the interval forecasts generated comply with the un-

conditional, conditional and independence hypothesis at alternative forecasting horizons and

forward dimensions. The latter result holds at the aggregate level as well as at the product

specific level. While the accuracy of point forecasts vis-a-vis a naive benchmark appears to

be product specific, interval (i.e. density) forecasts generated from the model provide accurate

information with respect to the out-of-sample distribution of term structures.

As introduced in Section 4.3, we also test the economic significance of the forecasts of our

proposed model by testing the performance of a hedging strategy resulting from the variance

minimization problem of a portfolio constructed of a spot and a futures position. Results over
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all 42 products are displayed in Figure 10. The results indicate that the model generates on

average a reduction of about 20% in portfolio variance in relation to a naive strategy. Results on

the statistical significance of the variance reduction by means of the Clark and West test show

that, as in the case of point forecasts, the reduction in variance significantly improves upon a

naive strategy at the product specific level but is only slightly better than a naive strategy at

the aggregate level.

Our results confirm findings in the rising literature on hedging in commodity markets which

show that fractional cointegrated and regime switching models have good forecasting capabilities

vis-a-vis naive benchmarks from both a statistical an economic perspective. However the results

depend many times on the product, horizon and forward dimension analyzed (Boswijk et al.,

2015; Cavalier et al., 2015; Dolatabadi and Nielsen, 2015; Dolatabadi et al., 2015).

7 Conclusion

The present article proposed a framework for modeling and forecasting financial and commod-

ity term structures in a unified global setting. Our framework not only allows analysts to

extract interesting and useful information in-sample such as time-varying variance decomposi-

tions, dynamic correlations, mapping to the macroeconomy, but also provides a value added for

forecasting both in terms of statistical and economic performance measures. The main results of

our study show that the extracted components can account for an important amount of the total

variation in the data. The mapping to the macroeconomic fundamentals show that there is, as

expected, a statistically significant relationship of the extracted components to macroeconomic

variables.

As for the out-of-sample evaluation we find that the proposed model can generate forecasts

that outperform a naive benchmark (random walk) at the product level in terms of point-forecast

accuracy and variance reductions resulting from an artificial hedging strategy. At the product

and aggregate level we find that the proposed model generates accurate interval (i.e. density)

forecasts according to the unconditional, conditional and independence hypothesis tests.

The results of this study are not only useful for academics extending versions of the NS
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model but also for practioners who use term structures to take decisions with respect to hedg-

ing, portfolio optimization or financial and monetary policies. An interesting extension to the

present analysis would be whether other volatility structures (e.g. stochastic volatility or dy-

namic conditional correlations) can improve upon the current results in terms of statistical and

economic performance. We leave these issues to future research.
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A State-space representation

The state-space representation of our model is given by:


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
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

+



ε1t(1)
...

ε1t(T )
...

εNt(1)
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

= A · J +B · Xg,t + C · Xm,t +D · Xn,t + E · Ft +A · Ut + Et

= K + [B, C, D, E, A][Xg,t; Xm,t; Xn,t; Ft; Ut] + Et, (30)

= K + ΠXt + Et. (31)

where we use semi-colon (;) to denote vertical concatenation. The matrices of coefficients are

given by:
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Term structure conditional (co)variances and correlations are given by:

Σt = ΠQtΠ
′ + Vt, (37)

ρt = diag (Σt)
−1 Σtdiag (Σt)

−1 . (38)

with

Qt =


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=
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0N×36 Dt

]
, (39)

Vt =
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...
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0 · · · υNt(T − 2) 0 0

0 · · · · · · 0 υNt(T − 1) 0

0 · · · · · · 0 υNt(T )


= diag([υ1t(1), υ1t(2), ..., υNt(T − 1), υNt(T )]), (40)

where 03 is a 3 × 3 matrix of zeros, Ht = [ιglb ⊗Hglb,t; ιcom ⊗Hcom,t; ...; ιf ⊗Hf,t], with ιglb =

(1, 0, ..., 0)′, ιcom = (0, 1, ..., 0)′,..., ιf = (0, 0, ..., 1)′, ⊗ is the Kronecker product and Dt =

diag([ωl,1t, ωs,1t, ..., ωc,Nt, ωf,Nt]).
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B Estimation

In what follows we describe in more detail the estimation approach.

1. We first estimate the product’s level, slope, curvature and seasonality factors lit, sit, cit, fit

as well as the maturity and amplitude parameters λit and κit in equation (1) by means of

Nonlinear Least Squares (NLS) at each point in time. In addition, we obtain Least Squares

and Generalized Least Squares estimates of the factors lit, sit, cit and fit at each point

in time by (i) using the NLS time-varying estimates λ̂it and κ̂it (OLSPTV/GLSPTV),

(ii) using the mean NLS estimates per product λ̄i and κ̄i (OLSPRD/GLSPRD), (iii)

using ‘Mean Group’ NLS time-varying estimates averaged over sectors λ̂nt and κ̂nt

(OLSSTV/GLSSTV), (iv) using ‘Mean Group’ NLS mean estimates averaged over sec-

tors λ̄n and κ̄n (OLSSEC/GLSSEC).17 Given the candidate estimates of the factors ob-

tained via NLS, OLSPTV, GLSPTV, OLSPRD, GLSPRD, OLSSTV, GLSSTV, OLSSEC,

GLSSEC we compute Bayesian average (BAV) estimates of the factors lit, sit, cit and fit

as well as maturity λit and amplitude κit as:

l̂BAVit = w̃′itl̂it, (41)

ŝBAVit = w̃′itŝit, (42)

ĉBAVit = w̃′itĉit, (43)

f̂BAVit = w̃′itf̂it, (44)

λ̂BAVit = w̃′itm̂it, (45)

where w̃it =
exp(−0.5BICj,it)∑J
j=1 exp(−0.5BICj,it)

with BICjt the Bayesian information criterion of (1) ob-

tained from estimation type j at time t for each i. Moreover, l̂it, ŝit, ĉit, f̂it are vectors

containing the factor estimates and m̂it, âit are vectors containing the estimated matu-

rity and amplitude parameters obtained with the candidate estimation procedures. The

weights hold given diffuse priors and equal model prior probabilities which is assumed

here for simplicity (Hoeting et al., 1999).

2. Given the BAV estimates for the level, slope, curvature and seasonality parameters,

we demean and standardize the BAV factor estimates denoted
˜̂
lBAVit , ˜̂sBAVit , ˜̂cBAVit for

i = 1, ..., N . We extract the first principal component from each of the BAV factor

estimates denoted L̂g,t, Ŝg,t, Ĉg,t, with corresponding factor loading estimates γ̂gj,i for

j = l, s, c, g = {global} and i = 1, ..., N by means of Principal Component Analysis

(PCA). Let âgl,it =
˜̂
lBAVit − γ̂gl,iL̂g,t, â

g
s,it = ˜̂sBAVit − γ̂gs,iŜg,t, â

g
c,it = ˜̂cBAVit − γ̂gc,iĈg,t, for

i = 1, ..., N be the resulting residuals. We break âgj,it for j = l, s, c and i = 1, ..., N

into two market groups, i.e., commodity markets (energy, metals, softs, grains, livestock)

17We experimented with median as opposed to mean estimates of the NLS λ̂it and κ̂it but results turn out to
be very similar.
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and financial markets (forex, bonds, equity) and extract the first principal components

from each group denoted L̂m,t, Ŝm,t, Ĉm,t with corresponding factor loading estimates

γ̂mj,i for j = g, s, c, m = {commodities, financials} and i = 1, ..., N by means of PCA. Let

âml,it = âgl,it− γ̂
m
l,iL̂m,t, â

m
s,it = âgs,it− γ̂ms,iŜm,t, âmc,it = âgc,it− γ̂mc,iĈg,t for i = 1, ..., N . We break

amj,it for j = l, s, c and i = 1, ..., N into eight sector groups, i.e., energy, metals, softs, grains,

livestock, forex, bonds, equity and extract the first principal components from each group

denoted L̂n,t, Ŝn,t, Ĉn,t with corresponding factor loading estimates γ̂nj,i for j = g, s, c,

n = {energy,metals, softs, grains, livestock, forex,bonds, equity} and i = 1, ..., N by means

of PCA. In the case of the stochastic seasonality factors fit, we demean and standardize

the BAV estimates denoted
˜̂
fBAVit for i = 1, ..., N and obtain the first three principal com-

ponents of the data denoted F̂u,t, F̂v,t, F̂w,t, with corresponding factor loading estimates

γ̂•f,i for • = u, v, w. Given the candidate component estimates L̂g,t, Ŝg,t, Ĉg,t, L̂m,t, Ŝm,t,

Ĉm,t, L̂n,t, Ŝn,t, Ĉn,t, F̂u,t, F̂v,t, F̂w,t and the BAV factor estimates obtained in the previous

step, we (re)estimate the parameters of the system specification (5)-(8) for all i = 1, ..., N

by means of system GMM. We employ one lag of the components as instruments and the

inverse of a Newey-West HAC covariance (obtained from the OLS residuals in a first step)

as weighting matrix. The idiosyncratic components ε̂•,it for • = l, s, c, f are the residuals

of the system GMM regressions for all i.

3. Let Xj,it = [L̂j,t, Ŝj,t, Ĉj,t]
′, for j = g,m, n or Xj,t = [F̂u,t, F̂v,t, F̂w,t]

′ for j = f . The

state variable rt in the conditional mean of (9) which drives the time-variability of the

parameters d, α, β,Γ is assumed to evolve with respect to a first-order Markov chain, with

transition probability given by:

P(rt = y|rt = x) = πxy. (46)

The expression above describes the probability of switching from regime x at time t − 1

to regime y at time t. In this article we consider two regimes, that is rt = 1, 2, so that the

uncoditional (ergodic) probabilities of being in state rt = 1 or state rt = 2 are given by

π̄1 = (1−πxx)/(2−πxx−πyy). In what follows let It denote the information set available

to the econometrician at time t. To save on notation, we write (9) compactly as,

Yj,t = X
(r)
j,t = V

(r)
j,t + ξj,t, (47)

where V
(r)
j,t = Yj,t − ξj,t = E [Yj,t|It−1] = Υj,dj,rX

(r)
j,t + αj,rβ

′
j,r∆

dj,r−bj,rΥj,bj,rX
(r)
j,t +∑P

p=1 Γpj,r∆
dj,rΥp

j,bj,r
X

(r)
j,t for every j = g,m, n, f . We write:

Yj,t|It−1 ∼

 N
(

Ξ
(1)
t

)
for π

(1)
jt

N
(

Ξ
(2)
t

)
for 1− π(1)

jt

,Ξ
(r)
t = (dr, br, β

′
r, α
′
r, vec(Γr)

′,diag(θ)′, diag(δ)′, ζ ′)′, (48)
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where N (•) denotes the conditional normal distribution, Ξ
(r)
t is the vector of parameters

for the r-th regime and π
(1)
jt = P(rt = 1|It−1) is the probability of regime 1 conditional on

the information set at period t− 1. The parameters β′r, α
′
r, vec(Γr)

′ are concentrated out

of the Likelihood estimation and estimated via canonical correlation analysis and OLS

(Johansen and Nielsen, 2012). The conditional probability π
(1)
j.t is given by:

π
(1)
j,t = P(rt = 1|It−1) = (1− π22)

[
N (Yj,t−1|rt−1 = 2)(1− π(1)

jt−1)

N (Yj,t−1|rt−1 = 1)π
(1)
j,t−1 +N (Yj,t−1|rt−1 = 2)(1− π(1)

j,t−1)

]

+ π11

[
N (Yj,t−1|rt−1 = 1)π

(1)
j,t−1

N (Yj,t−1|rt−1 = 1)π
(1)
j,t−1 +N (Yj,t−1|rt−1 = 2)(1− π(1)

j,t−1)

]
. (49)

The likelihood function is then given by (18) and the conditional Normal distribution

given that regime r occurs at time t is given by

N (Yj,t|rt = r) =
1

2
|Hj,t|−1/2 exp

{
−1

2

(
Yj,t − V(r)

j,t

)
H−1
j,t

(
Yj,t − V(r)

j,t

)}
. (50)

4. Given the estimated idiosyncratic components ε̂•,it obtained from the system GMM re-

gression in step two and the measurement errors ε̂it(τ) obtained from Êt = Zt − Π̂X̂t
using the estimated matrix of parameters Π̂ in (32)-(36), we employ ML to estimate the

autoregressive and GARCH(1,1) parameters in (13) and (14) for each i and τ .

C Forecasting

Following Dolatabadi et al. (2015), the multi-step ahead forecasts of the FCVAR for each j =

l, s, c, f can be obtained in the case of no regime-switching and no volatility-in-mean as

X̂j,t+h|t = Υj,d̂X̂j,t+h|t + α̂j β̂
′
j∆

d̂−b̂Υj,b̂X̂j,t+h|t +
k∑
p=1

Γ̂j,p∆
d̂Υp

j,b̂
X̂j,t+h|t (51)

Note that since Υj,• is a lag operator, the right hand side of (53) is conditional on past infor-

mation. In the case of regime switching parameters and volatility-in-mean we have

X̂
(r)
j,t+h|t = Υj,d̂r

X̂
(r)
j,t+h|t + α̂j,rβ̂

′
j,r∆

d̂r−b̂rΥj,b̂r
X̂

(r)
j,t+h|t +

k∑
p=1

Γ̂pj,r∆
d̂rΥp

j,b̂r
X̂

(r)
j,t+h|t (52)

+ ζ̂j � diag
(
Ĥj,t+h|t

)
.

with r = 1, 2 and the weigthed forecasts are then given by (23). Moreover, in order to compute

forecasts of the conditional (co)variances of the term structures we start by noting that the
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OGARCH volatilities for each j = g,m, n, f can be computed from (12) recursively as:

Ω̂jt+h|t = IK + diag(θ̂j + δ̂j)
h−1 �

(
Ω̂jt+1|t − IK

)
, (53)

Ĥjt+h|t = B̂jΩ̂jt+h|tB̂
′
j , (54)

where IK is an identity matrix of order K = 3. Given Ĥjt+h|t for j = glb, fin, com, ... in (54)

and estimates for the GARCH(1,1) volatilities of the idiosyncratic components ω̂•,it+h|t and of

the measurement errors υ̂it+h|t(τ) we can compute D̂t+h|t and V̂t+h|t and subsequently (39), (40)

and (22) with the estimated Π̂.
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ESTIMATION APPROACHES
Type Advantages Disadvantages

NLS
Relatively simple Numerical optimization for factors estimation

Product specific time-varying parameters Static factor estimation
Flexible for dynamic specification No factor uncertainty correction

OLSPRD

Very simple Constant parameters
No numerical optimization for factor estimation Static factor estimation

Flexible for dynamic specification No factor uncertainty correction
Product specific constant maturity and amplitude

Not robust under heteroskedasticity

GLSPRD

Very simple Constant parameters
No numerical optimization for factor estimation Static factor estimation

Flexible for dynamic specification No factor uncertainty correction
Robust under heteroskedasticity Product specific constant maturity and amplitude

OLSSEC

Very simple Constant parameters
No numerical optimization for factor estimation Static factor estimation

Flexible for dynamic specification No factor uncertainty correction
Sector specific constant maturity and amplitude

Not robust under heteroskedasticity

GLSSEC

Very simple Constant parameters
No numerical optimization for factor estimation Static factor estimation

Flexible for dynamic specification No factor uncertainty correction
Robust under heteroskedasticity Sector specific constant maturity and amplitude

OLSPTV

Very simple Static factor estimation
No numerical optimization for factor estimation No factor uncertainty correction

Flexible for dynamic specification Not robust under heteroskedasticity
Product specific time maturity and amplitude

GLSPTV

Very simple Static factor estimation
No numerical optimization for factor estimation No factor uncertainty correction

Flexible for dynamic specification
Product specific time-varying maturity and amplitude

Robust under heteroskedasticity

OLSSTV

Very simple Static factor estimation
No numerical optimization for factor estimation No factor uncertainty correction

Flexible for dynamic specification Not robust under heteroskedasticity
Sector specific time maturity and amplitude

GLSSTV

Very simple Static factor estimation
No numerical optimization for factor estimation No factor uncertainty correction

Flexible for dynamic specification
Sector specific time maturity and amplitude Robust under heteroskedasticity

BAV

Weighted estimation ‘Hybrid’ estimation
Weighted factor uncertainty correction Factor uncertainty reduced

Flexible for dynamic specification
‘Hybrid’ dynamic specification

Weighted time-varying/constant maturity and amplitude
Weighted OLS, GLS, NLS

Table 2: Description of factor estimation approaches considered
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Level Slope Curvature Seasonality

Product GLO MAR SEC GLO MAR SEC GLO MAR SEC SF1 SF2 SF3

BRENT
0.01 -0.04 0.00 -0.09 0.01 -0.04 0.02 -0.03 0.02 0.00 0.00 0.00
(0.00) (0.01) (0.03) (0.01) (0.01) (0.03) (0.01) (0.01) (0.02) (0.00) (0.00) (0.00)

WTI
0.02 -0.01 0.00 -0.05 0.01 -0.04 0.03 -0.04 0.05 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.01) (0.02) (0.03) (0.01) (0.01) (0.02) (0.00) (0.00) (0.00)

GASOLINE
0.03 -0.00 -0.02 0.03 0.02 -0.11 0.09 -0.13 -0.21 -0.55 0.57 0.11
(0.00) (0.01) (0.03) (0.05) (0.04) (0.08) (0.06) (0.09) (0.13) (0.41) (0.53) (0.35)

HEATINGOIL
0.03 -0.04 -0.11 -0.03 0.06 -0.10 0.02 -0.09 -0.04 0.00 0.00 0.00
(0.02) (0.05) (0.14) (0.04) (0.08) (0.16) (0.04) (0.09) (0.12) (0.00) (0.00) (0.00)

GASOIL
0.03 0.00 -0.02 -0.03 0.01 -0.02 0.03 -0.03 -0.01 0.00 0.00 0.00
(0.00) (0.02) (0.06) (0.00) (0.01) (0.02) (0.01) (0.01) (0.02) (0.00) (0.00) (0.00)

NATURALGAS
0.03 -0.02 0.04 0.02 0.02 0.05 0.03 0.01 0.21 0.45 -0.07 -0.04
(0.00) (0.01) (0.03) (0.02) (0.03) (0.06) (0.04) (0.05) (0.13) (0.38) (0.51) (0.60)

COAL
0.06 0.01 -0.01 0.03 -0.02 -0.03 -0.00 0.00 -0.02 0.00 0.00 0.00
(0.00) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.00) (0.00) (0.00)

CO2
0.06 -0.08 0.23 0.03 -0.02 0.13 -0.01 0.10 0.04 0.00 0.00 0.00
(0.04) (0.10) (0.34) (0.04) (0.10) (0.13) (0.08) (0.17) (0.23) (0.00) (0.00) (0.00)

GOLD
0.03 0.02 0.03 -0.00 0.00 -0.00 0.00 -0.00 -0.01 0.00 0.00 0.00
(0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.02) (0.03) (0.00) (0.00) (0.00)

SILVER
0.05 0.05 0.12 -0.01 -0.06 -0.16 0.04 0.06 -0.20 0.00 0.00 0.00
(0.02) (0.16) (0.24) (0.03) (0.12) (0.32) (0.06) (0.18) (0.41) (0.00) (0.00) (0.00)

COPPER
0.06 0.00 -0.04 0.05 0.01 0.04 -0.04 0.03 -0.02 0.00 0.00 0.00
(0.02) (0.02) (0.04) (0.02) (0.03) (0.07) (0.03) (0.03) (0.08) (0.00) (0.00) (0.00)

ALUMINUM
0.03 -0.00 0.02 0.02 -0.02 0.01 0.00 0.01 0.02 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.00) (0.00) (0.00)

LEAD
0.02 -0.01 0.01 0.00 -0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00)

NICKEL
0.03 -0.02 0.03 0.01 -0.04 0.02 0.02 0.03 0.03 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00)

ZINC
0.01 -0.01 0.03 0.01 -0.01 0.01 0.00 0.02 0.02 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00)

COTTON
0.02 0.02 0.07 0.01 -0.04 0.04 0.12 0.10 0.34 0.35 0.27 1.35
(0.00) (0.02) (0.05) (0.02) (0.10) (0.16) (0.10) (0.14) (0.19) (0.44) (0.35) (0.96)

WHEAT
0.02 0.00 -0.01 -0.01 0.01 0.07 0.07 0.03 -0.16 0.00 0.00 0.00
(0.00) (0.01) (0.02) (0.01) (0.01) (0.03) (0.03) (0.04) (0.07) (0.00) (0.00) (0.00)

CORN
0.01 0.02 0.02 -0.01 -0.04 0.17 0.11 0.03 -0.37 -0.04 0.58 -0.58
(0.01) (0.01) (0.02) (0.02) (0.04) (0.08) (0.06) (0.06) (0.16) (0.43) (0.62) (0.57)

SOYBEAN
0.02 0.04 0.09 -0.01 -0.02 0.09 0.08 0.06 0.12 0.21 0.09 -0.12
(0.00) (0.02) (0.06) (0.02) (0.05) (0.05) (0.03) (0.05) (0.10) (0.25) (0.21) (0.31)

SUGAR
0.02 0.04 0.07 -0.00 -0.12 0.13 0.06 0.05 -0.34 -0.17 0.48 -0.08
(0.02) (0.03) (0.20) (0.03) (0.05) (0.13) (0.04) (0.06) (0.43) (0.51) (1.09) (0.53)

ORANJE
0.02 -0.09 -0.16 -0.02 0.06 0.20 -0.04 -0.07 -0.04 0.00 0.00 0.00
(0.02) (0.17) (0.54) (0.03) (0.16) (0.53) (0.08) (0.24) (0.27) (0.00) (0.00) (0.00)

COCOA
-0.01 -0.05 0.05 0.00 0.00 -0.01 -0.01 -0.00 -0.03 0.00 0.00 0.00
(0.00) (0.01) (0.03) (0.01) (0.01) (0.03) (0.02) (0.02) (0.04) (0.00) (0.00) (0.00)

COFFEE
0.02 0.01 0.05 0.01 -0.08 0.04 0.05 0.08 -0.09 0.00 0.00 0.00
(0.01) (0.02) (0.05) (0.01) (0.01) (0.02) (0.02) (0.03) (0.06) (0.00) (0.00) (0.00)

ETHANOL
0.03 0.01 -0.00 -0.03 -0.01 0.07 0.01 0.04 -0.13 -0.10 -0.35 -0.23
(0.00) (0.01) (0.02) (0.02) (0.03) (0.10) (0.03) (0.04) (0.14) (0.21) (0.21) (0.39)

LUMBER
-0.01 0.01 0.05 -0.00 0.02 0.08 0.09 0.04 0.17 0.00 0.00 0.00
(0.02) (0.03) (0.08) (0.02) (0.05) (0.13) (0.04) (0.08) (0.21) (0.00) (0.00) (0.00)

LIVECATTLE
-0.00 0.00 0.01 0.05 0.03 0.52 -0.04 -0.01 0.67 0.56 0.81 -0.43
(0.02) (0.04) (0.07) (0.06) (0.05) (0.16) (0.17) (0.14) (0.54) (2.41) (1.71) (1.83)

LEANHOGS
0.01 0.09 0.31 0.00 -0.04 0.21 0.22 0.31 1.43 2.99 -0.04 -0.90
(0.03) (0.04) (0.10) (0.12) (0.14) (0.19) (0.26) (0.20) (0.55) (1.80) (2.22) (3.44)

FEEDERCATTLE
-0.03 0.02 0.08 0.05 0.01 0.17 0.03 0.02 0.26 0.34 0.24 0.01
(0.01) (0.01) (0.02) (0.02) (0.02) (0.05) (0.05) (0.03) (0.11) (0.43) (0.40) (0.44)

USDEUR
-0.00 0.01 0.01 -0.02 -0.02 0.00 0.03 -0.01 -0.01 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

ZARGBP
-0.05 0.04 0.08 -0.01 -0.00 0.02 0.01 -0.03 0.03 0.00 0.00 0.00
(0.01) (0.03) (0.03) (0.02) (0.02) (0.05) (0.04) (0.07) (0.20) (0.00) (0.00) (0.00)

GBPEUR
0.01 0.01 -0.00 -0.00 -0.01 -0.00 0.00 0.00 -0.01 0.00 0.00 0.00
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

ZARUSD
-0.05 0.04 0.04 -0.02 0.01 0.03 0.01 -0.06 0.03 0.00 0.00 0.00
(0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.02) (0.04) (0.00) (0.00) (0.00)

JPYUSD
-0.03 0.02 -0.01 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

RENUSD
-0.01 -0.01 0.01 -0.01 -0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00)

USINTR
0.01 -0.03 0.08 0.02 -0.01 0.01 -0.02 0.11 0.00 0.00 0.00 0.00
(0.02) (0.04) (0.06) (0.03) (0.05) (0.06) (0.03) (0.07) (0.06) (0.00) (0.00) (0.00)
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EUINTR
-0.48 -0.19 0.58 -0.68 -0.54 0.39 0.83 -0.34 0.41 0.00 0.00 0.00
(0.06) (0.12) (0.14) (0.05) (0.07) (0.10) (0.06) (0.15) (0.16) (0.00) (0.00) (0.00)

SAINTR
-0.20 -0.09 0.40 -0.31 -0.23 0.35 0.27 -0.05 0.41 0.00 0.00 0.00
(0.04) (0.09) (0.12) (0.04) (0.07) (0.09) (0.05) (0.09) (0.10) (0.00) (0.00) (0.00)

UKINTR
-0.01 -0.04 0.03 0.11 -0.25 -0.39 0.07 -0.53 0.40 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.09) (0.10) (0.13) (0.09) (0.21) (0.17) (0.00) (0.00) (0.00)

JPINTR
0.00 0.01 0.01 0.01 0.00 0.02 -0.01 0.01 0.03 0.00 0.00 0.00
(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00)

CHINTR
-0.06 -0.02 0.05 -0.04 -0.11 0.02 0.09 0.10 0.03 0.00 0.00 0.00
(0.02) (0.04) (0.06) (0.02) (0.04) (0.05) (0.02) (0.04) (0.04) (0.00) (0.00) (0.00)

SP500TSX60
-0.01 0.02 0.04 -0.00 0.00 -0.00 -0.00 -0.00 -0.01 0.00 0.00 0.00
(0.00) (0.01) (0.02) (0.00) (0.00) (0.01) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00)

FTSE100
-0.02 0.03 0.05 -0.01 0.00 0.04 0.01 -0.01 0.11 0.00 0.00 0.00
(0.00) (0.01) (0.03) (0.01) (0.01) (0.05) (0.02) (0.02) (0.21) (0.00) (0.00) (0.00)

Table 4: Component loadings for level, slope, curvature and seasonality factors
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Non-Regime Switching Regime Switching

Component Diag VAR CVAR FCVAR FCVAR-OG RSFCVAR-OG RSFCVAR-OGM

GLO

L 4018.638 4010.820 4012.203 4274.291 4314.816 4431.828

LRp 0.000 1.000 0.096 0.000 0.000 0.000

COM

L 3057.168 3068.470 3040.458 3285.717 3282.048 3216.401

LRp 0.000 0.000 1.000 0.000 1.000 1.000

FIN

L 2167.301 2171.892 2190.021 2725.699 2866.797 2693.152

LRp 0.000 0.002 0.000 0.000 0.000 1.000

ENE

L 3076.458 3082.519 3085.464 2848.062 2543.828 2879.110

LRp 0.000 0.000 0.015 1.000 1.000 0.000

MET

L 2225.004 2213.219 2228.412 1994.807 2095.854 2198.392

LRp 0.000 1.000 0.000 1.000 0.000 0.000

GRA

L 2160.538 2143.805 2145.606 3513.031 3673.814 3602.652

LRp 0.000 1.000 0.058 0.000 0.000 1.000

SOF

L 2655.370 2675.327 2679.610 2717.519 2932.087 2938.100

LRp 0.000 0.000 0.003 0.000 0.000 1.000

LIV

L 3029.695 3024.042 3031.817 3666.757 3748.355 3694.890

LRp 0.000 1.000 0.000 0.000 0.000 1.000

FEX

L 2757.695 2755.534 2767.369 3163.390 2424.060 2830.182

LRp 0.000 1.000 0.000 0.000 1.000 0.000

BON

L 3517.987 3521.230 3536.950 3937.453 3996.207 3944.632

LRp 0.000 0.011 0.000 0.000 0.000 1.000

EQT

L 1089.600 1064.085 1036.178 1143.612 1144.499 1160.232

LRp 0.000 0.000 0.000 0.000 1.000 1.000

SEA

L 1574.418 1584.657 1590.112 2183.107 2252.260 2354.177

LRp 0.000 0.000 0.001 0.000 0.000 0.000

Table 6: Diagnostics for alternative dynamic component specifications
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Figure 3: Selected model-based term structures over time and forward month.
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Figure 4: Selected model-based volatility term structures over time and forward month.
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