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Non-technical summary  
 
Many theoretical economic models contain expectations of future outcomes as variables in the 
system. Rational expectations, a concept in which information from the entire model is used to 
determine expectations of future outcomes, has been the dominant method used in theoretical 
models for the past half century (since the introduction of the concept by John Muth (1961)).  
 
The most commonly used methods for working with Dynamic Stochastic General Equilibrium 
(DSGE) models rely on a combination of linear approximation and rational expectations to 
achieve a solution. Linear approximation is attractive because it is tractable, produces solutions 
in state-space form which can be easily estimated, and allows questions of solution existence 
and uniqueness to be easily answered relative to a non-stochastic steady state.  
 
Despite the advantages in terms of tractability and feasibility, linear approximation methods 
have a number of disadvantages. For example, they impose that agents’ decision rules do not 
change in response to changes in the variance of exogenous shocks, that the economy responds 
the same to shocks regardless of whether the economy is in a recession or expansion, that the 
response of the economy is always linearly proportional to the size of the shocks, and that 
positive and negative shocks have symmetric effects. These assumptions preclude answers 
about stochastic volatility or changes in uncertainty, asymmetric behaviour over the business 
cycle, and many other interesting questions.  
 
We present an analysis which shows that non-linear solutions can be almost as straightforward 
as linear approximation methods for a wide class of models. Just as linear approximations can 
be regarded as first-order Taylor series differential approximations, our method explains how 
to use second- and third-order Taylor series differential approximations to account for model 
non-linearities. The analysis uses nothing more than textbook differential matrix calculus (for 
example, Magnus and Neudecker (2002)) to achieve the result.  
 
Questions of existence and uniqueness are the same as in the first-order, and the non-linear 
solution has a linear state space representation. We explain how to use existing linear solution 
methods multiple times to achieve a non-linear approximate solution. The linear state-space 
representation means that the non-linear solution can be used for simulation and impulse 
response analysis nearly as easily as a linear solution. Finally, we conclude with a numerical 
example in which two models — one with firm heterogeneity and one without — are identical 
in linear approximations, but which have important differences that show up when non-linear 
solution methods are used.  
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1 Introduction

Since the emergence of the real business cycle literature it has become commonplace to obtain

solutions to nonlinear rational expectations models using log-linear or linear (first-order) approx-

imations. Various studies on first-order approximation methods have shown that first-order ap-

proximate solutions have many appealing properties, e.g.: (i) local uniqueness and stability can be

easily characterized, (ii) the method is simple to apply and is computationally scalable, especially

compared to fully non-linear methods, and (iii) the resulting solution can be cast in a state-space

form, which permits practical applications such as estimation, forecasting, and impulse response

analysis.1 Furthermore, for many standard rational expectations models such as real business cy-

cle (RBC) and standard New Keynesian models, first-order approximations have been shown to

approximate the true nonlinear solutions quite well. In spite of this, there exists a large number of

modern macroeconomic models where it is necessary to move beyond linear approximations. Mod-

els with state-dependent decisions, e.g. in pricing or investment, are one such example. First-order

approximations are ill-suited for these models since the linearized solutions render the effect of a

given exogenous shock independent of the state of the economy, partly nullifying the models’state-

dependence feature. And since large shocks have proportionally the same effect as small shocks in

a linearized solution, applying the method to models in which risk and uncertainty matter a great

deal, e.g. asset pricing models and models with financial frictions, may yield inaccurate solutions.

In addition, it is now well known that using first-order approximations for evaluating welfare and

comparing alternative policies may yield incorrect conclusions.2 For these reasons a number of

recent studies have proposed solution algorithms for second- or higher-order approximations and

championed their use to solve rational expectations models – among others, Schmitt-Grohe and

Uribe (2004), Swanson, Anderson, and Levin (2005), Lombardo and Sutherland (2007) and Kim,

Kim, Schaumburg, and Sims (2008).3

Despite this recent advance in higher-order approximations there remains unresolved issues

regarding the properties of the solutions and their suitability for various analyses. First, unlike

in the first order, the stability and the uniqueness of higher-order approximate solutions remain

an open question. The presence of quadratic terms in second-order approximations, for example,

1A non-exhaustive list of studies on first-order approximations: Blanchard and Khan (1980), Anderson and Moore
(1984), King and Watson (1998, 2002), Sims (2001), and Klein (2004).

2See, e.g., Kim and Kim (2003).
3With the exception of Swanson, Anderson, and Levin, all other studies only concern up to second-order approx-

imations.

1



opens the possibility for multiple solutions, even when uniqueness is achieved under a first-order

approximation. Another important issue regards the form of the solutions. As discussed in Kim,

et.al. (2008), conventional second-order Taylor-series approximations like in Schmitt-Grohe and

Uribe (2004) cannot be directly used to perform standard analyses such as impulse response due to

the presence of "garbage" higher order terms – for this reason it is necessary to first "prune" these

extraneous terms from the approximate solutions before performing various analyses. This pruning

mechanism leads to a solution in a state-space form, which is useful for forecasting, estimation, and

simulation exercise. Although it leads to a usable solution form, a fundamental question of interest

is whether pruning is legitimate, in a sense that it reflects a true second-order approximate solution

based on the Taylor series. Third, with the exception of Swanson, Anderson, and Levin (2008) and

Lan and Meyer-Gohde (2013), all existing studies focus only on second-order approximations. Given

the highly nonlinear and stochastic nature of modern macroeconomic models, it is of interest to

develop a unified solution algorithm for third- and higher-order approximations and to understand

their stability and uniqueness properties. There is also the practical issue of how to perform a

pruning-like mechanism to these higher-order approximate solutions and obtain consistent state-

space representations. Finally, since higher-order systems get large fast, even for a small model, it

is important to have a solution algorithm that is both fast and effi cient.

In this paper we describe a new approach to computing approximate stochastic equibrilia for

nonlinear rational expectations that applies to any order of approximation. It is a straightfor-

ward approach that relies on a particular version of Taylor series approximations– the differential

version– and on a scalar perturbation of the support of the history of shocks. The approach is

based on the simple idea that both the approximate model equations and the approximate solution

system are stochastic difference equations which are intimately linked. For any order of approxi-

mation, we deduce restrictions directly on the stochastic differentials of approximate equilibrium

stochastic processes; and we do so in a relatively straightforward manner, using little more than

differential calculus and some linear algebra.

Our approach has several advantages over existing approaches and provides answers to un-

resolved issues on higher-order approximations described above. First, our differential approach

naturally leads to a solution in a state-space form for any order of approximation – the state-

space form is linear, but the effect of nonlinearity is preserved through the interactions among

variables and shocks. Moreover, our approach provides an endogenous pruning-like mechanism,

which indicates that the exogenous pruning mechanism performed, for example, in Kim, et.al.
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(2008) is, in fact, unnecessary. Second, we show that stability and uniqueness issues are settled

in the first order. As long as the first-order approximate solution is stable and unique, so is the

solution to any higher-order approximation. Third, as in Lombardo and Sutherland and Kim,

et.al., our solution algorithm utilizes familiar linear rational expectations techniques to succesively

solve for higher-order approximations. As there is already a wealth of computational resources

on linear approximation techniques, this leads to faster and more effi cient computation. Fourth,

the approach is general, in a sense that we do not need to take a stand on whether to impose

restrictions on variables or restrictions on equations. That is, the approach can be used either in an

algorithm where a researcher has to specify which variables are predetermined and jump variables,

e.g. as in Blanchard and Khan (1980), King and Watson (1998, 2002) and Klein (2000), or in

Sims’(2001) algorithm where the only necessary information is on which equations are subject to

endogenous forecast errors. Fifth, our approach can be used simply to verify key propositions of

the earlier studies, to extend its range of application, and to resolve puzzles left by it. In terms of

propositions, there is a direct implication of the core theorem (Theorem 1) in Schmitt-Grohe and

Uribe (2004), which indicates that second order approximations originating from the simultaneous

stretching of shocks have no effects on first or second order approximation coeffi cients, except for

a constant term adjustment in the second order case which depends on the extent of the variance

of the shocks. We extend this theorem and show that in third-order approximate solution the

effect of shock uncertainty is time-varying and depends on the state of the economy. Finally, while

this paper only provides explicit solutions up to a third-order approximation, extensions to any

higher-order are direct and straightforward. And importantly, our approach is unified in a sense

that for any order of approximation the general form of the restrictions is identical and thus, the

same core algorithm can be used to obtain the solutions – what is different for different orders are

the elements of the driving processes.

The rest of the paper is organized as follows. Section 2 describes the general forms of the model

to be approximated and the approximate equilibrium solutions. Section 3 contains the details of

our differential approach and how to compute the solutions to any order of approximation. We

provide explicit state-space form solutions up to a third-order approximation. Properties of the

approximate solutions and links to existing approaches in the literature are discussed in Section 4.

Section 5 applies the method to two nonlinear rational expectations models. Section 6 concludes.
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1.1 Comparison to existing studies

Table 1 provides a summary of comparison between our approach and several existing studies in the

literature, namely Schmitt-Grohe and Uribe (SGU, 2004), Swanson, Anderson, and Levin (SAL,

2005), Lombardo and Sutherland (LS, 2007), Kim, et.al. (KKSS, 2008), and Lan and Meyer-Gohde

(LM, 2013). We differentiate each study into several main characteristics, listed in the rows of Table

1. The last column describes the characteristics of our approach.

Looking first at the order of approximations, SGU, LS, and KKSS each describes a method

that is valid up to a second-order approximation. The perturbation AIM method of SAL is valid

up to a 7th-order of approximation. As mentioned above, we provide an approach that is valid for

any order of approximation. In terms of the type of Taylor series approximation, all four studies

utilize the conventional Taylor series approximation, in contrast to our differential version of the

Taylor series. The differential approach is central to our method as it allows us to naturally and

consistently obtain solutions in a state-space form without the use of "exogenous," somewhat ad-

hoc, pruning mechanism like in LS and KKSS. In addition, it leads to clean and straightforward

stability and uniqueness conditions. While LS also discuss similar conditions for second-order

approximate solutions, we extend the result and show that the stability and uniqueness conditions

are the same irrespective of the order of approximation. On the type of restrictions being imposed

on rational expectations models in order to obtain solutions, unlike the existing studies where

restrictions are imposed either on equations (SAL, KKSS, and LM) or variables (SGU and LS),

our approach can be applied to both types of restrictions. In terms of the computation method,

we follow the direct method akin to the canonical-variable method in Blanchard and Khan (1980),

which is also used in LS and KKSS. This is in contrast to the undetermined coeffi cients-like approach

used in SGU, SAL, and LM. The direct method permits faster computation since it does not rely

on approximating the policy functions and hence, does away from the implicit function theorem.

Finally, as in LS and KKSS, our solution algorithm utilizes familiar techniques from the linear-

approximation literature.

Our approximation approach is closest to that in Lan and Meyer-Gohde (2013), which, like ours,

is based on the idea that a solution to rational expectations model is a function of the entire infinite

history of shocks. Their solution method is also valid for any order of approximation and similarly,

the stability of the solution to any order of approximation is shown to only depend on the stability

of the first-order approximate solution. However, the execution in terms of finding the approximate
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solution is quite different. LM posit that the unknown policy function is a function of the entire

history of shocks and derive restrictions directly based on the Taylor series in these infinite series

of shocks (a "Volterra" series), expanded around the certainty point. These restrictions, for a given

order of approximation, can then be used to solve for the unknown partial derivatives (the coeffi -

cients of the policy function) using the undetermined coeffi cients-like method used, for example, in

SGU (2004). This approach of finding the solution leads to an approximate policy function that is

a nonlinear function of the infinite history of shocks (for a second-order approximation or higher),

i.e. a nonlinear moving average process. We show in Appendix C, however, that approximating the

entire history of shocks is equivalent to taking a standard Taylor-series approximation via differen-

tial. This novel observation means that we do not need to deal with these infinite number of shock

terms, making our approach highly tractable. In addition, it allows us to operate with standard

state-space methods widely used in the literature.4 While one can use the solution form in Lan and

Meyer-Gohde to properly perform impulse response analysis, it is less useful for other purposes,

e.g. for estimation, due to the infinite number of terms related to the shocks. This will not be an

issue in our approach since our use of state-space methods allows the solution to be directly cast

in a standard linear state-space form, permitting the potential use of standard Kalman filter for

estimation purpose (see Kollman, 2013).

2 Model and approximate solution: The general forms

We first stipulate the general class of models we are interested in and the general form of an n-th

order solution, including the general structures of the restriction and the solution for each of its

elements.

The models of interest We seek an approximate solution to the following class of rational

expectations models:

0 = g(zt+1, zt, ηt+1) (1)

0 = Etf(zt+1, zt, ηt+1) , (2)

where the the first block contains ng equations which are stochastic as of t and the second block

contains nf equations that are exact as of t (including expectational restrictions). Both vector-

4Except for Lan and Meyer-Gohde (2013), all the studies mentioned in Table 1 use state-space methods.
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valued function g and f are possibly, and in general, nonlinear. There are nz variables in the

system, which are contained in the vector zt, and there are as many equations as variables, i.e.

nz = ng+ nf . ηt+1 = σεt+1 are the vector of i.i.d. exogenous shocks or disturbances with zero

mean, stretched by the perturbation parameter, σ. Some of the variables in zt are jump variables,

while some are predetermined. The number of exogenous shocks in the system is nε. We leave the

distribution of the exogenous shocks unspecified.

Taking the conditional expectations, the two block of equations in (1) and (2) can also be

compactly written as

0 = EtΓ(zt+1, zt, ηt+1) . (3)

We will use the general forms (1)-(2) and (3) interchangeably in subsequent expositions of our

approach. Note that we do not restrict the way exogenous shocks affect the variables and hence,

they are allowed to enter nonlinearly. In subsequent discussions, we do not take a stand on whether

restrictions are imposed on variables or equations for the existence of a solution – our approach

can be used irrespective of the choice. Appendix A contains a computational application of our

approach where the restrictions are imposed on equations as in Sims (2001).

The n-th order solution The approximate solution to the system (3) (or equivalently, (1) and

(2)) to the n-th order is of the form

zt ' z̄ + y
(1)
t +

1

2
y
(2)
t +

1

6
y
(3)
t + ...+

1

n!
y
(n)
t , (4)

where z̄ is the vector of deterministic steady-state values of zt, satisfying

0 = Γ(z̄, z̄, 0) , (5)

and y(i)t , i = 1, ..., n, denotes the i-th order element of the solution (based on the Taylor series).

Obtaining the approximate solution in (4) is tantamount to obtaining the solutions to y(i)t , consistent

with restrictions imposed by the nonlinear system of equations in (3). If the the solution to each

y
(i)
t is obtained in a state-space form, the n-th order solution is also in a state-space form. Our

approach to finding the solution is to solve for y(i)t successively, starting from i = 1.5 As will be

clear later, y(i)t is in fact the solution to the restrictions imposed by the i-th differential of (3).

5This successive computation approach is first advocated by Lombardo and Sutherland (2007).
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General forms of approximate-model restrictions and solutions For each y(i)t , i = 1, ..., n,

in the n-th order approximate solution, we will show that the restrictions for the solution are linear

in form and given by

A1y
(i)
t+1 = B1y

(i)
t + C

(i)
1 x

(i)
t+1 (6)

A2Ety
(i)
t+1 = B2y

(i)
t + C

(i)
2 Etx

(i)
t+1 , (7)

with the driving process evolves according to6

x
(i)
t = γ(i) + γ(i)ς ς

(i)
t−1 + γ(i)v v

(i)
t (8)

ς
(i)
t = φ(i) + φ(i)ς ς

(i)
t−1 + φ(i)v v

(i)
t (9)

The driving variables x(i)t are treated as exogenous for each i, but are not necessarily exogenous

for the whole system (3). Notice that the ng× nz matrices A1 and B1 and the nf× nz matrices A2

and B2 have no superscript i and hence, are identical for all i. The vector of innovations, v
(i)
t , has

zero mean and variance Ω
(i)
v .

The restrictions above are familiar restrictions from the literature on linear approximation

methods. As such, the solution to y(i)t can be obtained using any linear approximation method and

can be written in a linear state-space form,

y
(i)
t = θ(i)y + θ

(i)
ykk

(i)
t + θ(i)yς ς

(i)
t (10)

k
(i)
t = θ

(i)
k + θ

(i)
kkk

(i)
t−1 + θ

(i)
kς ς

(i)
t−1 + θ

(i)
kvv

(i)
t (11)

for some states k(i)t .
7 It follows then the n-th order approximate solution is also available in a

state-space form – moreover, the resulting state-space form is linear. Despite the linear form,

nonlinearity is preserved for a second-order approximation and higher in the definition of variables

and shocks in ς(i)t , k
(i)
t , and v

(i)
t . At this point we note that in order for the solutions in (10) and

(11) to exist, we assume standard regularity conditions from the linear approximation literature,

see. e.g. the conditions in King and Watson (1998). We also impose the "no unit root condition"

6Alternatively, taking the time-t conditional expectations, we can write the restrictions as AEty
(i)
t+1 = By

(i)
t +

C(i)Etx
(i)
t+1, with A =

[
AT1 AT2

]T
, B =

[
BT1 BT2

]T
, and C(i) =

[
C
(i)T
1 C

(i)T
2

]T
.

7 In this general state-space form solution, we allow for y(i)t and k(i)t to depend on constants, θ(i)y and θ(i)k – but
these could be removed by appropriately redefining the definition of the endogenous and state variables.

7



for ease of exposition of our approach.

3 Our approach: Taylor Series approximation via differential

An equilibrium solution to a rational expectations model in (3) is a stochastic process which satisfies

the model’s equations, including those with expectations, at all dates and from specified initial

conditions. This stochastic process can alternatively be represented as a function of the entire

history of shocks,

zt = Z({ηt−j}∞j=0) , (12)

where ηt−j = σεt−j . A central diffi culty is that this true stochastic process– or the true solution

function, Z– is not known and is only implicit in model restrictions. Our solution approach is to

find an approximate stochastic process by taking a Taylor series approximation to the unknown true

solution (12), around the deterministic stationary point implicit in (5). This approximation can

be viewed as a Taylor series approximation in the perturbation parameter σ at every date, around

the deterministic point, σ = 0. Hence, treating an underlying distribution function for ηt = σεt as

fixed at every date, we can stretch this distribution and write the Taylor formula as

Z({ηt−j}∞j=0) = z +

∞∑
i=1

(i!)−1
∂iZ({σεt−j}∞j=0)

(∂σ)i
σi

As is apparent from the above formula, the coeffi cient terms rapidly become complicated func-

tions of the history of shocks, even for the second-order approximation (i = 2). However, while

these terms express the nature of the perturbation approximation that we are undertaking, there

is no need to actually calculate the relevant components of, say,
∂2Z({σεt−j}∞j=0)

(∂σ)2
σ2. As shown in

Appendix C, the Taylor formula above is equivalent to taking a Taylor series approximation via

differential :

zt = Z({ηt−j}∞j=0) ≈ z̄ + dzt +
1

2
d2zt +

1

6
d3zt + .... (13)

Hence, to obtain the approximation to the n-th order all we need to do is to calculate the solution for

the differentials, dzt, ..., dnzt. These differential solutions have to be consistent with the restrictions

imposed by the model’s equations in (1) and (2).

We note that our approximation strategy differs from the standard approach in the literature

in two respects. First, it is conventional to find an equilibrium solution by first positing unknown
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policy functions,

zt = z(st;σ)

st = m(st−1, ηt;σ) ,

for some states st, before proceeding to find the approximation to such policy functions, e.g. as in

Schmitt-Grohe and Uribe (2006). This is in contrast to our approach of finding the approximation

to the stochastic process directly. Even if there is a one-to-one relationship between the approximate

solutions arising from the two approaches, our approach offers a potentially faster solution as it does

not need to rely on implicit function theorem, which is needed in the policy functions approximation

approach. Moreover, our direct approach also makes the stability and the uniqueness conditions

transparent. The second difference is that we use the differential version of the Taylor series

approximation (13) instead of the conventional one. In Section 4, we contrast the two versions of

the Taylor series approximation and show why the differential version is preferable.

3.1 A simple scalar example

To illustrate our approximation strategy let’s first consider a simple scalar system

zt = f(st)

st = m(st−1, ηt),

where the scalar functions f and m are fully known. The innovation ηt has zero mean and variance

Ωη. This system is descriptive, in a sense that there is no need to actually solve for the solution

as the system itself is already a true solution. We are interested in the approximate solutions to

the variable zt, around the deterministic stationary point satisfying z̄ = f(s̄) and s̄ = m(s̄, 0).

Note that the system above belongs to the general class of models described in (3). For example,

by defining z̃t =
[
zt st

]T
and shifting the dates one-period forward the system above can be

written as

0 = Γ̃(z̃t+1, z̃t, ηt+1) ,

with Γ̃ now is a vector-valued function consisting of the functions f and m.

Consider the second-order Taylor series approximation to the above system – based on our
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differential approach this is given by

zt ' z̄ + dzt +
1

2
d2zt .

All we have to do is to find the solutions to the differentials, dzt and d2zt. Defining fs(.) and fss(.)

as the first and the second derivatives of the function f with respect to its argument (st), we have

dzt = [fs(st)] dst

d2zt = [fs(st)] d
2st + [fss(st)] (dstdst) .

The differentials dst and d2st are in turn given by

dst = [ms(st−1, ηt)] dst−1 + [mη(st−1, ηt)] dηt

d2st = [ms(st−1, ηt)] d
2st−1 + [mss(st−1, ηt)] (dst−1dst−1)

+ [2msη(st−1, ηt)] (dηtdst−1) + [mηη(st−1, ηt)] (dηtdηt) ,

wherems(st−1, ηt) andmη(st−1, ηt) are the first partial derivatives of the functionm(.) with respect

to its first argument and the second argument, respectively, and mss(st−1, ηt), mηη(.), and msη(.)

are the second partial and cross derivatives. Notice that d2st does not contain the term d2ηt since

ηt = σεt, and hence, djηt = 0 for all j > 1. The nature of perturbation we are undertaking also

implies dηt = d(σεt+1) = εt+1(σ − 0) = ηt.

Evaluating all the coeffi cients at the stationary point, it follows then the second-order approxi-

mate solution is given by

zt ' z̄ + dzt +
1

2
d2zt

= z̄ + [fs] dst +
1

2

[
fs fss

] d2st

dstdst

 , (14)

with the full state vector evolves according too


dst

d2st

dstdst

 =


ms 0 0

0 ms mss

0 0 m2
s




dst−1

d2st−1

dst−1dst−1

+


mη 0 0

0 2msη mηη

0 2msmη m2
η




ηt

ηtdst−1

ηtηt

 . (15)
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The above state-space form can then be used to perform various analyses such as forecasting and

calculating impulse responses. In the first-order solution, zt ' z̄ + dzt, only the evolution of dst

in the first line in (15) matters. For second order, the state vector consists of dst, d2st, and

dstdst. Note that here, while dst = st − s̄ can be interpreted as the (level) deviation of st from its

stationary point, the interpretation of the second-order differential, d2st, is not as straightforward.

For now, we will just refer dnst, n > 1, as the the n-th differential of the state(s), st. We show

later that these higher-order differential terms are directly related to the higher-order terms in

the conventional Taylor series approximation. The evolution of the last element of the full state

vector, dstdst, is derived by taking the square of the evolution of dst, i.e. the state evolution in the

first-order differential. Unlike in the first-order, the second-order approximate solution makes the

effect of exogenous shocks to be potentially state-dependent and conditionally heteroskedastic (the

ηtdst−1 term) and size- and variance-dependent (the ηtηt term). There is also a nonzero mean to

d2st and dstdst, so that the second-order approximation no longer displays certainty equivalence in

the mean. These properties will translate to the general class of models in (3) as well.

While simple, the above example illustrates many of the appealing properties of our approxi-

mation strategy mentioned in the introduction. For one, extensions to higher order approximations

are direct. For example in the third-order approximation, all we need to do is to calculate the

expression for d3zt, which depends on d3st, which in turns depends on various third-order terms

such as dst−1dst−1dst−1, d2stdst, and dηtdηtdst−1 – and this third-order approximate solution

can also be cast in a state-space form. It is also straightforward to determine the stability of the

approximate solutions. Notice that the first-order solution is stable if |ms| < 1. This condition

also guarantees the stability of the second-order approximate solution as the stability of d2st also

depends on the same coeffi cient: ms on d2st−1 and m2
s (which is < 1 if |ms| < 1) on dst−1dst−1.

For the third order, stability will depend on ms, m2
s, and m

3
s, which is smaller than one in absolute

value if |ms| < 1. Hence, the stability of the approximate solution for any order only depends on

whether the first-order approximate solution is stable.

11



3.2 The general class of models

We now turn to applying the approximation strategy to the general class of models described in

(1) and (2),

0 = g(z′, z, η′)

0 = Etf(z′, z, η′) ,

where we have dropped time subscripts temporarily and use a prime to represent t + 1 variables.

Since our strategy involves computing the approximate solution successively starting from the lowest

order, our presentation mirrors this.

3.2.1 The first-order approximate solution

Total differentiation of the model equations above provides a set of restrictions on the first-order

differentials and their equilibrium dynamics:

0 = Gz′dz
′ +Gzdz +Gη′dη

′ (16)

0 = Et[Fz′dz
′ + Fzdz + Fη′dη

′] , (17)

where the matrices Fj and Gj , j ∈ {z′, z, η′}, are the partial derivatives with respect to elements

of j of the functions f and g, respectively, evaluated at the deterministic stationary point.8 These

differential restrictions can thus be written as

A1dz
′ = B1dz + C

(1)
2 η′ (18)

A2Etdz
′ = B2dz + C

(1)
2 Etη

′ , (19)

which is of the general form of restrictions depicted in (6) and (7) with matrix coeffi cients A1 =

−Gz′ , B1 = Gz, C
(1)
2 = Gη′ , A2 = −Fz′ , B2 = Fz, and C

(1)
2 = Fη′ . The vectors of variables and the

driving process in these first-order differentials are y(1) = dz and x′(1) = dη′ = η′, respectively. Since

η′ is just the vector of the model’s original i.i.d. exogenous shocks with Etη′ = 0 its evolution – in

8The matrix Fz′ is the nf -by-nz matrix of partial derivatives with respect to z
′, with the (i, j)th element being

the partial derivative of the ith equation with respect to the jth element of z′. The matrix Gz′ is correspondingly a
ng-by-nz matrix, with elements defined for equation i and the jth element of z′. The matrices Gz and Fz are defined
similarly for elements of z, so are the ng-by-nε matrix Gη′ and the nf -by-nε matrix Fη′ for elements of the shock
vector, η′.
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terms of the general form in (8) and (8) – is very simple, i.e. there is no additional driving-process

term, ς(1), and we simply have η′ = Iηη
′, where Iη is an nε × nε identity matrix.

The determinacy (stability and uniqueness) condition and the solution The system of

restrictions in (18) and (19) can be solved using any of the variety of linear rational expectations

solution methods in the literature, e.g. King and Watson (1998) and Klein (2000), or in Sims’

(2001). The solution can be written in a recursive, state-space form,

dz = Πds (20)

ds′ = Φsds+ Φηη
′ ,

with ds = s− s̄. The vector of state variables, s, could either consist of the original state variables

in the model or linear combinations of the original states.9 This solution is of the general form

depicted in (10) and (11). Note that to obtain the above solution we implicitly assume that a stable

solution exists and is unique.10 For example, if we use the method of King and Watson (1998), the

linear difference (differential) system

AEtdz
′ = Bdz

where A =
[
AT1 AT2

]T
and B =

[
BT
1 BT

2

]T
, must satisfy the following conditions.11 First, there

must be a number φ such that |Aφ − B| 6= 0. Second, the no-unit-root condition further requires

that |A − B| 6= 0. Third, the relevant generalizations of the Blanchard and Kahn (1980) rank

and order conditions must be satisfied, in that there must be as many stable eigenvalues as there

are elements of st and it must be feasible to associate unstable canonical variables (which include

components related to unstable and infinite eigenvalues) to remaining elements of zt. Given the

differential solution above, it follows then the first-order approximate solution is given by (adding

back the time subscripts)

zt = z̄ + dzt

= z̄ + θ
(1)
zξ ξ

(1)
t (21)

9When restrictions are made on the variables like in King and Watson (1998) and Klein (2000), st is the vector
of original state variables. Under Sims (2001) where restrictions are determined from the equations directly, st, in
general, is a linear combination of the original states.
10 It is generally possible to characterize the whole set of solutions under multiple equilibria (indeterminacy)
, see e.g. Lubik and Schorfheide (2004). We leave this for future research.
11XT represents the transpose of matrix X.
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with

ξ
(1)
t+1 = θ

(1)
ξξ ξ

(1)
t + θ

(1)
ξv v

(1)
t+1 , (22)

where θ(1)zξ = Π, θ(1)ξξ = Φs, θ
(1)
ξv = Φη, ξ

(1)
t = dst, and v

(1)
t = ηt.

3.2.2 The second-order approximate solution

Total differentiation of the first-order differential restrictions in (16) and (17) gives us the relevant

restrictions on the second-order differentials.

0 = Γz′Etd
2z′ + Γzd

2z + Etδ
′(2) , (23)

where

Γz′ =

 Gz′

Fz′

 , Γz =

 Gz

Fz


and

δ′(2) = Γz′z′(dz
′ ⊗ dz′) + 2Γz′z(dz

′ ⊗ dz) + 2Γz′η′(dz
′ ⊗ dη′) (24)

+Γzz(dz ⊗ dz) + 2Γzη′(dz ⊗ dη′) + Γη′η′(dη
′ ⊗ dη′) .

In writing the restrictions above, we use the expectational form of the system of equations (3),

instead of separating them into f -type and g-type equations, to save notations. The vector δ′(2) can

be interpreted as the driving process relevant to the second-order differentials, d2z. The matrices

Γjk, j, k ∈ {z′, z, η′}, are Jacobian matrices consisting of partial derivatives of matrix Γj , with

respect to each element of k. That is, Γhjk ≡ vec
(

∂
∂k

[
Γhj

]T)T
for rows h = 1, ..., nz.12

Several comments on the differential restrictions in (23) are in order. First, notice that the

coeffi cient matrices Γz′ and Γz are identical to the matrices attached to Etdz′ and dz′ in the

expectational form of the first-order differential restrictions in (16) and (17).13 What is different

between the first- and second-differential restrictions, aside from the differential order, is the element

of the driving process. Instead of consisting of the stochastic shocks in the nonlinear model, the

driving process in the second order, δ′(2), is now a function of various cross (tensor) products of

the elements of the first-order differentials and driving process. This second-order driving process

12vec(.) is the matrix vectorization operator. If A is an m × n matrix and ai is its i-th column, vec(A) =[
aT1 aT2 ... aTn

]T
. The dimension of vec(A) is mn× 1.

13 In fully-expectational form, the first-order differential restrictions are 0 = Γz′Etdz
′ + Γzdz + Γη′Etη

′.
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therefore, unlike the driving process in the first order (η′), is endogenous from the perspective of

the model. However, since we have already known (and have computed) the first-order differential

solutions, δ′(2) can be treated as exogenous for the purpose of computing the solution to the second-

order differentials, d2z.14 These observations have an important implication: The restrictions in

(23), although they are nonlinear in nature, can now be cast in a linear form stipulated in (6) and

(7). Despite this linear form, nonlinearity is still preserved, but now is present in the definition of

the elements of the driving process, i.e. the cross products of the lower-order differential elements.

These restrictions can therefore be solved using any standard linear rational-expectations solution

method – an observation first pointed out by Lombardo and Sutherland (2007).

The discussion above also applies to any differential restrictions higher than second order. That

is, the restrictions will have the same general linear form, but the elements of the driving process

will be different for different orders. The driving process to any i-th order differential restrictions

will consist of various cross products of the elements of all lower-order differential solutions and

their driving processes, hence preserving the nonlinear nature of the model. And given that we have

computed these lower-order solutions prior to computing the solution to the i-th order differentials

of interest, the driving process can be treated as if they are exogenous. Any standard linear rational-

expectations method can thus be applied to obtain the solution to any i-th differentials, provided

that the lower-order differential solution(s) have been computed. Finally, since matrices Γz′ and

Γz attached to Etdiz′ and diz are identical for any i, it follows that we do not have worry about

the determinacy condition. As long as the first-order differential solution is stable and unique, so

is the solution to any order of approximation.

The evolution of the driving process To obtain the solution to d2z we first need to obtain

the evolution of the driving process, δ′(2). As elaborated in Appendix B, we can write various cross

products in (24) directly as a function of the first-order state-variables and driving process using

the first-order differential solution in (20). This process yields (adding back the time subscripts)

δ
(2)
t+1 = C(2)x

(2)
t+1 ,

14 In fully-expectational form, the first-order differential restrictions are 0 = Γz′Etdz
′ + Γzdz + Γη′Etη

′.
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with x(2)t+1 defined by

x
(2)
t+1 =


vech(dstds

T
t )

vech(ηt+1η
T
t+1)

vec(dstη
T
t+1)

 . (25)

We leave the detail of the matrix coeffi cient C(2) in Appendix B. Here, we just mention that C(2)

consists of various cross products involving the coeffi cients in the first-order differential solution

and the Jacobian matrices Γjk, j, k ∈ {z′, z, η′}. The vector of the second-order driving process,

x
(2)
t+1, consists of various cross products of the first-order state variables and driving process. In

(25), vec(.) is the standard matrix vectorization operator and vech(.) is a vectorization operator

that chooses only unique elements of a symmetric matrix.15,16

From (25), it follows then we can separate the elements of x(2)t between those that are subject

to innovations and those that are not – the latter ones become the additional ("pseudo") states

relevant for the second-order differentials. Defining these additional states and the innovations as17

ς
(2)
t = vech(dstds

T
t − Ωss)

v
(2)
t =

 vech(ηtη
T
t − Ωηη)

vec(dst−1ηTt )

 ,

we have

x
(2)
t =


vech(dst−1dsTt−1)

vech(ηtη
T
t )

vec(dst−1ηTt )

 = γ(2) + γ(2)ς ς
(2)
t−1 + γ(2)v v

(2)
t (26)

We leave the details of the coeffi cients γ(2), γ(2)ς , and γ
(2)
v in Appendix B. Ωss and Ωηη are the

unconditional expectations of the cross products of the first-order state variables and innovations,

respectively – that is, Ωss = E[dstds
T
t ] and Ωηη = E[ηtη

T
t ].18 Notice that we have chosen to

define the additional states and the innovations, ς(2)t and v(2)t , in terms of deviations from their

15For any symmetric n × n matrix S, vech(S) is a column vector of length n(n + 1)/2, created through vertical
concatenation of the unique elements of S – following Magnus and Neudecker (2002), the unique elements are chosen
from the lower-triangular part of the symmetric matrix. The operator vech(.) is related to the standard vectorization
operator vec(.) through a duplication matrix. That is, for any symmetric n × n matrix S there exists a unique
n2 × n(n+1)

2
matrix Ds such that Dsvech(S) = vec(S).

16The following properties of Kronecker product is used to obtain C(2) and x(2)t+1: (i) for any conformable matrices
A, B, C, and D, (AB ⊗ CD) = (A⊗ C)(B ⊗D); and (ii) for any two column vectors a and b, vec(abT ) = b⊗ a.
17We call these additional states as "pseudo states" as these state variables arise from lower-order differential

solutions.
18Since ηt is i.i.d., E[dst−1η

T
t ] = 0.
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unconditional expectations, as this "demeaned" system would be most useful in terms of various

practical applications such as impulse response analyses. This choice, however, is innocuous for the

purpose of obtaining the second-order differential solution, as the "non-demeaned" system would

be equally fine as well.19 Finally, from the evolution of dst in (22) the pseudo states can be found

to evolve as

ς
(2)
t = φ(2) + φ(2)ς ς

(2)
t−1 + φ(2)v v

(2)
t , (27)

which is of the general form described in (9).20

The determinacy condition and the differential solution The differential restrictions in

(23) can now be written in expectational linear-difference system,21

AEtd
2zt+1 = Bd2zt + C(2)Etx

(2)
t+1 ,

with A = −Γz′ and B = Γz. Since the matrices A and B are identical to those in the first-order

differential system in (18) and (19), d2zt is also determinate, i.e. the same determinacy conditions

as in the first order hold. Given the evolution of the driving process in (26) and the pseudo states

in (27), the solution is obtained as

d2zt = θ(2)y + θ
(2)
yk d

2st + θ(2)yς ς
(2)
t (28)

d2st = θ
(2)
k + θ

(2)
kk d

2st−1 + θ
(2)
kς ς

(2)
t−1 + θ

(2)
kv v

(2)
t (29)

Here, d2st is the second differentials of the states st, identified in the first-order approximate

solution. Again, we leave the full details of various coeffi cients above in Appendix B. But here, we

just note that θ(2)yk = θ
(1)
yk = Π and θ(2)kk = θ

(1)
kk = Φs due to identical matrices A and B attached to

the differentials of interest in the first- and second-order restrictions. This result confirms our prior

observation (and the simple example in Section 3.1) that the same determinacy conditions hold for

both the first- and second-order differentials.

The state-space solution above can be further modified by expressing d2st in terms of deviation

from their unconditional expectations, E[d2s], which can be obtained by from (29).22 This results

19The vector of innovations still needs to be demeaned, as we require E[v
(i)
t ] = 0 for all i.

20See Appendix B for the details of the coeffi cients.
21There should be no confusion in this system that some of the equations are non-expectational, i.e. they hold

exactly. Also, here A =
[
AT1 AT2

]T
and B =

[
BT1 BT2

]T
.

22From (29), E[d2st] = θ
(2)
k + θ

(2)
kkE[d2st−1], implying E[d2s] =

(
I − θ

(2)
kk

)−1
θ
(2)
k .
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in a fully-demeaned system,

d2zt = E[d2z] + θ
(2)
yk

(
d2st − E[d2s]

)
+ θ(2)yς ς

(2)
t (30)

d2st − E[d2s] = θ
(2)
kk

(
d2st−1 − E[d2s]

)
+ θ

(2)
kς ς

(2)
t−1 + θ

(2)
kv v

(2)
t . (31)

E[d2z] = θ
(2)
y + θ

(2)
yk E[d2s] is the unconditional expectation of the second-order differentials.

The second-order approximate solution Imposing our definition of the approximate solution

in (4) the second-order approximate solution is

zt ' z̄ + dzt +
1

2
d2zt

=
{
z̄ + θ

(1)
zξ ξ

(1)
t

}
+

1

2

{
E[d2z] + θ

(2)
zξ ξ

(2)
t

}
, (32)

with the full state vector evolves according to

 ξ
(1)
t+1

ξ
(2)
t+1

 =

 θ
(1)
ξξ 0

0 θ
(2)
ξξ

 ξ
(1)
t

ξ
(2)
t

+

 θ
(1)
ξv 0

0 θ
(2)
ξv

 v
(1)
t+1

v
(2)
t+1

 (33)

In the above we have collected all the state variables and innovations in the second-order differentials

into vectors ξ(2)t and v(2)t , respectively:

ξ
(2)
t =

 d2st − E[d2s]

ς
(2)
t

 ≡
 d2st − E[d2s]

vech(dstds
T
t − Ωss)

 ,

v
(2)
t =

 vech(ηtη
T
t − Ωηη)

vec(dst−1ηTt )

 .

The details of the matrix coeffi cients θ(2)zξ , θ
(2)
ξξ , and θ

(2)
ξv can be directly inferred from (27), (30),

and (31).23 We discuss several important properties of the above state-space solution in Section 4.

3.2.3 The third-order approximate solution

For the third-order approximate solution, we focus on presenting the general steps to obtain the

solution and its general form. Various details on the coeffi cients and the vectors of variables and

23See Appendix B for the details of the coeffi cients.
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innovations are provided in Appendix B.

Total differentiation of the second-order differential restrictions in (23) leads to the third-order

differential restrictions,

0 = Γz′Etd
3z′ + Γzd

3z + Etδ
′(3) . (34)

The form of the restrictions is therefore similar to the first- and second-order differential restrictions

((16), (17), and (23), respectively), except for the elements of the driving process. The driving

process, δ′(3), is now a function of various cross products of the elements in the first- and second-

order differential solutions, which can be treated as exogenous from the standpoint of computing

the solution to d3z.

The evolution of the driving process Using the first-order differential solution in (21) and

(22) and the second-order differential solution in (28) and (29), we can write the driving process as a

function of the cross products of all the state variables and innovations in the first- and second-order

solutions. Collecting these cross-products in a vector x(3)t+1, this process leads to

δ
(3)
t+1 = C(3)x

(3)
t+1 ,

The elements of x(3)t can be further separated into those that are subject to innovations at time t,

v
(3)
t , and the pseudo states, ς(3)t−1, leading to

x
(3)
t = γ(3) + γ(3)ς ς

(3)
t−1 + γ(3)v v

(3)
t . (35)

This process is the third-order counterpart to (26) in the second-order differentials. Here, for

example,

ς
(3)
t ≡

 ξ
(1)
t

vec
(
ξ
(1)
t ξ̃

(2)T
t − Ωξs

)
 ,

with ξ̃
(2)
t = ξ

(2)
t + E

[
ξ̃
(2)
t

]
is the non-demeaned version of the full state vector in the second-order

differentials, ξ(2)t , and Ωξs = E
[
ξ
(1)
t ξ̃

(2)T
t

]
.24 The third-order pseudo states therefore consists of the

cross products of all state variables present in the first- and second-order differential solutions. As

24Specifically,

ξ̃
(2)

t ≡
[

d2st
vech(dstds

T
t )

]
.

We use ξ̃
(2)

t , instead of the demeaned version ξ(2)t , simply for clarity of exposition.
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in the second order, both ς(3)t and v(3)t have been demeaned.

From the evolutions of the state variables in the first- and second-order solutions in (22) and

(33), it follows then ς(3)t can be found to evolve according to

ς
(3)
t = φ(3) + φ(3)ς ς

(3)
t−1 + φ(3)v v

(3)
t . (36)

The determinacy condition and the differential solution The differential restrictions in

(34) can now be written in expectational linear-difference system,

AEtd
3zt+1 = Bd3zt + C(3)Etx

(3)
t+1 ,

in a manner similar to the first- and second-order differentials. Hence, the solution to d3zt is also

determinate. Given (35) and (36), the solution is obtained as

d3zt = E[d3z] + θ
(3)
yk

(
d3st − E[d3s]

)
+ θ(3)yς ς

(3)
t (37)

d3st − E[d3s] = θ
(3)
kk

(
d3st−1 − E[d3s]

)
+ θ

(3)
kς ς

(3)
t−1 + θ

(3)
kv v

(3)
t . (38)

This solution is already cast in a fully-demeaned form, as in (30) and (31) in the second order

differentials. Here, d3st is the third differentials of the states st and E[d3z] = θ
(3)
y + θ

(3)
yk E[d3s] is

the unconditional expectation of the second-order differentials.

The third-order approximate solution Imposing our definition of the approximate solution

in (4) the third-order approximate solution is

zt ' z̄ + dzt +
1

2
d2zt +

1

6
d3zt

=
{
z̄ + θ

(1)
zξ ξ

(1)
t

}
+

1

2

{
E[d2z] + θ

(2)
zξ ξ

(2)
t

}
+

1

6

{
E[d3z] + θ

(3)
zξ ξ

(3)
t

}
, (39)

with the full state vector evolves according to


ξ
(1)
t+1

ξ
(2)
t+1

ξ
(3)
t+1

 =


θ
(1)
ξξ 0 0

0 θ
(2)
ξξ 0

0 0 θ
(3)
ξξ



ξ
(1)
t

ξ
(2)
t

ξ
(3)
t

+


θ
(1)
ξv 0 0

0 θ
(2)
ξv 0

0 0 θ
(3)
ξv



v
(1)
t+1

v
(2)
t+1

v
(3)
t+1

 (40)
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We have collected all the state variables in the third-order differentials into vectors ξ(3)t :

ξ
(3)
t =

 d3st − E[d3s]

ς
(3)
t

 .
The details of matrix coeffi cients θ(3)zξ , θ

(3)
ξξ , and θ

(3)
ξv can be directly inferred from (36), (37), and

(38).

3.2.4 Higher than third order

Extensions to the fourth order and higher are straightforward, albeit tedious. We can follow similar

mechanisms and steps as the above. To obtain the i-th order differential restrictions, we just need to

take the total differentiation to the restrictions in the (i−1)-th order. These restrictions have similar

form to those in any lower order, except for the driving process. The resulting driving process is

a function of cross-products of all lower-order differential solutions, which in turn can be written

as a function of cross products of all lower-order state variables and innovations. After identifying

the pseudo state and innovation vectors and obtaining the evolution of the states, the solution to

the i-th order differentials can then be obtained using any standard linear-rational expectations

methods. Finally, collecting all the relevant differential solutions, one can obtain the n-th order

approximate solution of interest defined in (4). The approximate solution to any n-th order can

always be cast in a state-space form as each differential solution is obtained in a state-space form.

4 Discussion

4.1 Properties of the approximate solutions

We discuss here some important properties of the first-, second-, and third-order approximate

solutions depicted in (21)-(22), (32)-(33), and (39)-(40). First, it is clear that all three approximate

solutions can be cast in a linear state-space form. Hence, no matter what the approximation order

is, one can, for example, generate impulse responses or perform simulations using the state-space

form. In terms of determinacy, as previously indicated, the solution to any approximation order

is determinate as long as the first-order solution satisfies the uniqueness and stability conditions.

These determinacy properties are reflected in various coeffi cients in the second-order and third-

order solutions. As shown in Appendix B, the eigenvalues of θ(2)ξξ and θ(3)ξξ are guaranteed to be
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inside unity as long as the eigenvalues of θ(1)ξξ = Φs are inside unity. It follows then, much as in

the simple example in Section 3.1, both the second- and third-order state vectors, ξ(2)t and ξ(3)t , are

non-explosive, implying the stationarity of solutions for all orders of approximation.

The effect of uncertainty, however, are captured differently across different orders. As is well

known, there is certainty equivalence in the first-order approximate solution, both in terms of the

policy and state evolution equations ((21) and (22)). That is, the coeffi cients θ(1)zξ and θ(1)ξξ are

identical to their non-stochastic counterparts. In the second-order solution, uncertainty affects

only up to a constant term, reflected by the presence of E[d2z] term in (32). The coeffi cients θ(2)zξ

and θ(2)ξξ , however, are identical to those in the non-stochastic version of the model. These results

are therefore consistent with Theorem 1 in Schmitt-Grohe and Uribe (2004).25 On the elements of

the innovation term, notice that since

v
(2)
t ≡

 vech(ηtη
T
t − Ωηη)

vec(dst−1ηTt )

 ,

our second-order state-space solution also implies that there is a time-varying conditional variance-

covariance matrix of the one-step-ahead forecast errors, with second moments of the ηt playing a

role. Due to the nonlinearity of the underlying model, the size of the shocks, ηt, matters and has

a second-order uncertainty effect (the vech(ηtη
T
t − Ωηη) term) and the effect of the shocks to the

system is state dependent and conditionally heteroskedastic (the vec(dst−1ηTt ) term).

The third-order state-space solution captures the effect of uncertainty one step further. In

addition to the constant-term effect through the presence of E[d3z], there is an additional time-

varying, state-dependent effect of uncertainty. Although not directly visible from (39)-(40), this

state dependence is captured through the presence of dst in ξ
(3)
t – as the constant term, this term

only appears when the model is stochastic. It is still the case, however, that the coeffi cients θ(3)zξ

and θ(3)ξξ are identical to those in the non-stochastic version of the model. We therefore extend

Theorem 1 in Schmitt-Grohe and Uribe to include the third-order approximation as well.

25The constant correction terms in Schmitt-Grohe and Uribe (2004) – hσσ and gσσ, using their notations – can
be shown to be identical to those in our second-order solution in (32) and (33). Using the details of the coeffi cients of
our solution in Appendix B, it is the case that hσσ = θ

(2)
k − θ(2)kς Ωss− θ(2)kv Ωηη and gσσ is equal to the first ny elements

of E[d2z]− θ(2)ykE[d2s]− θ(2)yς Ωss. Here, we assume that endogenous (jump) variables are ordered first in the vector of
all variables, zt, and ny is the number of endogenous variables.
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4.2 Conventional vs. differential Taylor-series approximation and pruning

Our use of a differential Taylor-series (TS) approximation instead of the conventional one (e.g. as

used in Schmitt-Grohe and Uribe, 2005) requires some discussion. To compare the two versions of

TS approximations, we utilize the simple scalar, descriptive model analyzed in Section 3.1, simply

for ease of exposition. The analysis based on this simple model and the subsequent discussion extend

to the general class of model as well. We also provide an explanation of the "pruning" mechanism

advocated in Kim, et al. (2008), especially in relation to our linear state-space solution. To permit

direct comparison to the two aforementioned studies, we focus on the second-order approximate

solution.26

The approximate solution to simple model based on the differential TS approximation is given

in (14)-(15). This state-space form can be rewritten as and is equivalent to

zt ' z̄ + fs

(
dst +

1

2
d2st

)
+

1

2
fss (dstdst) , (41)

 dst + 1
2d
2st

dstdst

 =

 ms
1
2mss

0 m2
s

 dst−1 + 1
2d
2st−1

dst−1dst−1

+

 mη msη
1
2mηη

0 2msmη m2
η




ηt

ηtdst−1

ηtηt

 .

(42)

The second-order approximate solution based on the conventional TS approximation to the same

model is on the other hand given by

zt ' z̄ + fs

(
d̃st

)
+

1

2
fss

(
d̃std̃st

)
, (43)

with the state-evolution equation

d̃st = msd̃st−1 +mηηt +
1

2

(
mssd̃std̃st + 2msηd̃st−1ηt + mηηηtηt

)
(44)

Here, d̃st ≡ st − s̄. The expressions above are obtained by directly employing the standard Taylor

series formula on the functions f(.) and s(.). In Schmitt-Grohe and Uribe, the boxed terms are not

present because the shocks in the underlying solution of the model are assumed to only directly

affect predetermined variables and are additively separable (linear). These terms are included here

26Schmitt-Grohe and Uribe (2004) and Kim, et al. (2008) only provide solutions up to a second-order approxima-
tion.
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for comparability and completeness in the discussion. Also, notice that since the simple model is

completely descriptive, the constant correction (stochastic) terms are not present.

Pruning Observe that if one were to use (43) and (44) directly to generate impulse responses or

perform simulations, zt would accumulate terms that are of order three or higher. These higher-

order terms do not necessarily improve the accuracy of the second-order solution and generally lead

to explosive forecasts and simulated time paths. Kim, et al. (2008) advocate that these extraneous

higher-order terms should be "pruned" out. This "pruning" mechanism entails making d̃std̃st in

(43) and (44) to evolve according to the first-order approximate solution. Expressing the first-order

solution as dst = msdst−1 +mηηt, this means

d̃std̃st ≈ dstdst

= m2
sdst−1dst−1 + 2msmηηtdst−1 +m2

ηηtηt .

As the term d̃st−1ηt in (44) also leads to extraneous higher-order terms, it also needs to be pruned

out, leading to d̃st−1ηt ≈ dst−1ηt. Hence, the pruned second-order solution based on the conven-

tional TS approximation leads to the following state-space form:

zt ' z̄ + fs

(
d̃st

)
+

1

2
fss (dstdst) , (45)

 d̃st

dstdst

 =

 ms
1
2mss

0 m2
s

 d̃st−1

dst−1dst−1

+

 mη msη
1
2mηη

0 2msmη m2
η




ηt

ηtdst−1

ηtηt

 . (46)

How does this pruned solution differ from our solution based on the differential TS approximation?

Comparing (41)-(42) with (45)-(46) it is clear that two state-space forms are identical, provided

that

d̃st = dst +
1

2
d2st .

In fact, this is our interpretation of the second differentials of the states, d2st: it is the second-

order expansions of the state vector based on the conventional TS approximation, net the first-

order expansions. One can therefore interpret d2st as an approximate second-order expansion term

necessary to make the second-order approximate solution to be non-explosive.

Another way to look at the relationship between our differential TS approach and pruning
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under conventional TS is by considering a descriptive nonlinear autoregressive scalar system, zt =

m(zt−1, ηt).
27 The second-order solution based on the conventional TS approximation to this system

is

z̃t = mz z̃t−1 +mηηt +
1

2

[
mzz z̃t−1 + 2mzη z̃t−1ηt +mηηη

2
t

]
,

with z̃t ≡ zt− z̄. The exogenous pruning mechanism involves replacing z̃t−1 in the squared bracket

above by its first-order approximation, dzt−1, yielding

z̃t ' mz z̃t−1 +mηηt +
1

2

[
mzz(dzt−1)

2 + 2mzηdzt−1ηt +mηηη
2
t

]
.

To show that z̃t ' dzt + 1
2d
2zt, replace z̃t−1 in the above expression with z̃t−1 = dzt−1 + 1

2d
2zt−1,

z̃t ' mz

(
dzt−1 +

1

2
d2zt−1

)
+mηηt +

1

2

[
mzz(dzt−1)

2 + 2mzηdzt−1ηt +mηηη
2
t

]
= (mzdzt−1 +mηηt)

+
1

2

[
mzd

2zt−1 +mzz(dzt−1)
2 + 2mzηdzt−1ηt +mηηη

2
t

]
The right-hand-side of the above expression is exactly the second-order approximation based on

the differential TS, i.e. dzt + 1
2d
2zt.

We thus conclude that our approximation approach based on the differential TS leads to an

identical solution to the pruned approximate solution based on the conventional TS approximation

in Kim, et al. Our use of the differential version of the TS approximation therefore renders pruning

unnecessary. Yet, on the flip side, our approach also justifies that the "exogenous" pruning mech-

anism advocated in Kim, et.al is in fact "approximation-consistent," in a sense of the Taylor-series

expansions. Our approach, however, offers an advantage over the conventional TS approximation in

that the solution is always obtained in a linear state-space for any order of approximation. And this

linear state-space form always leads to non-explosive impulse responses, forecasts, and simulated

time paths.

Comparing the pre-pruned solution based on the conventional TS approximation in (43)-(44)

with our solution in (41)-(42), we can also deduce that our approximation strategy provides the

researchers with instructions about what to place on the right-hand side of the equality sign: it is a

complete description of how to construct the approximate stochastic process. And this approximate

stochastic process is always non-explosive as long as the linear model is non-explosive. By contrast,

27Thanks to May Li for pointing out this example.
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the conventional TS approximation leaves some latitude. If one were working econometrically so

that actual lagged values were available, for example, one could use data on st−1 and (st−1)2.

However, to simulate the system, as in the construction of impulse responses, it is necessary to

somehow construct or approximate these elements.

5 Applications

In this section, we apply our approximation approach to two particular models: the one-sector

neoclassical growth model and the Q-theory model of lumpy investment in Miao and Wang (2013).

For each model, we compute the second-order approximate solution. We choose the neoclassi-

cal growth model to facilitate direct comparison to the second-order approximation approach in

Schmitt-Grohe and Uribe (2004) and to show how to employ our approach. The second model is

chosen to show that the dynamics obtained from the second-order approximate solution could be

very different compared to those coming from the first-order solution.

5.1 The neoclassical growth model

The simple neoclassical growth model consists of the following equations:

c−γt = βEtc
−γ
t+1

[
αAt+1k

α−1
t+1 + 1− δ

]
,

ct + kt+1 = Atk
α
t + (1− δ)kt ,

lnAt+1 = ρ lnAt + σεt+1 .

For this application, we use a computation approach in which the researchers have to specify which

variables are endogenous and exogenous, following King and Watson (1998, 2002), Klein (2004),

and Schmitt-Grohe and Uribe (2004). Here, ct is a non-predetermined endogenous variables, kt is

a predetermined endogenous variable (at time t), and At is an exogenous variable. k0 and A0 are

given. εt is i.i.d. with zero mean and unit variance. Following Schmitt-Grohe and Uribe (2004) we

set β = 0.95, δ = 1, α = 0.3, ρ = 0, γ = 2, and σ = 1.28 The calibration implies ln c̄ = −0.8734,

ln k̄ = −1.7932, and ln Ā = 0 in the deterministic steady state. To solve the model using our

28Note that the notations for the parameters and variables used in the model apply only for this subsection.
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approach, we define

zt =


c̃t

k̃t

Ãt

 ≡


ln ct

ln kt

lnAt


and

ηt+1 = [εt+1] ,

so that the nonlinear model can be represented by the system of nonlinear equations as in (3),

0 = EtΓ(zt+1, zt, ηt+1). Here, without any loss of generality, we order the state variables (non-

predetermined endogenous and exogenous variables) last in zt.29

Computing the approximate equilibrium solution to the second-order, we obtain a state-space

form as in (32)-(33) with

ξ
(1)
t =

 dk̃t

dÃt

 ≡
 k̂t

Ât

 ,

ξ
(2)
t =



d2k̃t − E
[
d2k̃
]

d2Ãt − E
[
d2Ã

]
(
dk̃t

)2
− E

[(
dk̃
)2]

dÃtdk̃t − E
[
dÃdk̃

]
(
dÃt

)2
− E

[(
dÃ
)2]


≡



d2k̃t − E
[
d2k̃
]

d2Ãt − E
[
d2Ã

]
k̂2t − E

[
k̂2
]

Âtk̂t − E
[
Âk̂
]

Â2t − E
[
Â2
]


,

where x̂t ≡ dx̃t = ln(xt/x̄) for any variable xt.30 The coeffi cients of the first-order terms are:31

θ
(1)
zξ =


0.2525 0.8417

1 0

0 1

 , θ(1)ξξ =

 0.4191 1.3970

0 0

 .

29 Instead of defining variables in terms of their logarithms, one can alternatively define zt =
[
ct kt At

]T
. We

use logarithms to permit direct comparison with the computation results in Schmitt-Grohe and Uribe (2004).
30The MATLAB codes are available upon request.
31Several of 0’s 1’s in various coeffi cients are the results of rounding – but they are practically 0 or 1.
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The coeffi cients of the second-order terms are given by:

θ
(2)
zξ =


0.2525 0.8417 −0.0051 −0.0341 −0.0569

1 0 0 0 0

0 1 0 0 0

 ,

θ
(2)
ξξ =



0.4191 1.3970 −0.0070 −0.0467 −0.0778

0 0 0 0 0

0 0 0.1757 1.1710 1.9517

0 0 0 0 0

0 0 0 0 0


.

The vectors of innovations are

v
(1)
t+1 =

[
εt+1

]
, v(2)t+1 =


(εt+1)

2

k̂tεt+1

Âtεt+1

 ,

with coeffi cients

θ
(1)
ξv =

 0

1

 and

θ
(1)
ξv =



0 0 0

0 0 0

0 0 0

0 0.4191 1.3970

1.000 0 0


Finally, various expected values of the second-differentials and the covariance matrix of the state

vectors are given by:

E[d2z] = E



d2c̃

d2k̃

d2Ã


 =


−0.0926

0.6674

0

 and E





d2k̃

d2Ã

k̂2

Âk̂

Â2




=



0.6674

0

2.3676

0

1


.
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The analysis in Section 4.2 shows that it is possible to associate each of the coeffi cients above

to those arising from the "pre-pruned" approximate solution, like the method used in Schmitt-

Grohe and Uribe (2004). Applying the analysis to the neoclassical growth model above leads to

the following laws of motion for the two endogenous variables:

ĉt = 0.2525k̂t + 0.8417Ât +
1

2

[
−0.1921− 0.0051k̂2t − 0.0341Âtk̂t − 0.0569Â2t

]
and

k̂t+1 = 0.4191k̂t + 1.3970Ât +
1

2

[
0.4820− 0.0070k̂2t − 0.0467Âtk̂t − 0.0778Â2t

]
.

These representations are identical to those in Schmitt-Grohe and Uribe (see Section 5.1 in their

paper).32

5.2 The Q-theory model

Our second application is on the Q-theory model with lumpy investment of Miao and Wang (2013).

Rather than presenting all the equations in the model, here we just describe the general features of

the model. The model in Miao and Wang is a simple, analytically tractable investment model that

incorporates both convex capital adjustment costs and lumpy investment at the micro level. Lumpy

investment is achieved through the presence of fixed costs of investments, as in the generalized

(S,s) model of Caballero and Engel (1999). The fixed costs are assumed to be random and drawn

independently across firms in each period from a time-invariant distribution. Firms that draw a

fixed cost that is lower than a cutoff fixed cost value will optimally choose to adjust their capital

levels, while firms drawing a fixed cost higher than this cutoff value will choose to wait until at

least next period to invest. Despite this lumpiness at the micro level, at the aggregate level, the

model is shown to be isomorphic to a standard Q-theory model with only convex adjustment costs

(and without fixed costs) as in Tobin (1969) and Hayashi (2003).33,34

This isomorphism result is an appealing feature since that means in the aggregate the model is

essentially a real business cycle (RBC) model with a standard investment feature – and it is well

known that RBC models are highly linear, i.e. a first-order approximate solution to the model is

32See footnote 23 on how to compute the second-order constant terms.
33Three conditions need to be satisfied for the isomorphism results: (i) the production technology is of constant

return to scale, (ii) the convex adjustment cost function is homogenous of degree one in capital and investment, and
(iii) the fixed costs do not become negligible (e.g. proportional to the level of capital).
34The fact that lumpy investment does not appear to matter for the aggregate dynamics means that the model is

consistent with the findings in Thomas (2002) and Khan and Thomas (2009).
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very accurate. Yet, the presence of lumpy investment means there is a potential gain in accuracy

when the model is solve to a second-order approximation. That is, the fact that the model features

fixed investment costs implies that firms’capital adjustment decision is state dependent and hence,

there are potentially important nonlinearity effects that are not captured by a first-order (linear)

approximation. Consider the following two equations in the model:

It
Kt

= it

[∫ ξ∗t

0
φ(ξ)dξ

]

Kt+1 = (1− δ)Kt + g(it)

[∫ ξ∗t

0
φ(ξ)dξ

]
Kt

The first equation shows that the aggregate investment rate, It/Kt, positively depends on the

firms’ investment target it and the proportion of firms that choose to adjust in a given period

(the adjustment hazard rate),
[∫ ξ∗t
0 φ(ξ)dξ

]
. This hazard rate positively depends on the fixed cost

cutoff, ξ∗t . The former thus represents the intensive margin effect, while the latter is the extensive

margin effect. It is the additional presence of the extensive margin effect that makes the model to

be potentially highly nonlinear – the degree of nonlinearity, of course, depends on the shape of

the fixed-cost distribution (PDF), φ(.). The nonlinearity effect of the extensive margin also affects

the rest of the variables in the model, e.g. the capital stock Kt+1, as is apparent from the second

equation above (g(.) is the convex adjustment cost function, with g′(i) > 0 ).

The rest of the model is standard, e.g. the utility function is of constant-relative-risk-aversion

type and the production function is Cobb-Douglas.35 The convex adjustment cost function is set

to g(i) = (ψ/(1−θ))i1−θ. For the distribution of the fixed costs, we do not use a specific functional

form. Instead, we calibrate its level and curvatures to have certain values at the steady state, as is

common in the neoclassical investment literature.36 The rest of the calibration is standard.37 We

solve this model to the second order using our approach and generate impulse responses to aggregate

productivity shocks. Productivity is assumed to followed an AR(1) process lnAt+1 = ρ lnAt+σεt+1,

with ρ = 0.95, σ = 0.0072, and σ ∼ i.i.d (0, 1), which implies ηt+1 = σεt+1 ∼ i.i.d (0, σ2).38

35The utility function is u(ct, nt) = (1 − σ)−1c1−σt − χ(1 + η)−1n1+ηt , with the production function given by
yt = Kα

t (Atnt)
1−α.

36Specifically, we calibrate the hazard rate (the CDF), Φ(ξ∗) to be 0.2 in the steady state. We also calibrate
ξ∗ = 0.0015 and ξ∗φ(ξ∗)/Φ(ξ∗) = 1 (unit elasticity of the hazard rate) to obtain the value for the PDF, φ(ξ∗). Lastly,
to obtain the curvature value, φ′(ξ∗), we calibrate ξ∗φ′(ξ∗)/φ(ξ∗) = 10. Note that one could alternatively look for
and use a specific distribution function that generates the calibrated level and curvature values.
37We set σ = 1, η = 0.05, ψ = 0.5, θ = 0.05, α = 1/3. The depreciation rate and the discount factor are δ = 0.04

and β = 0.99, respectivelly. χ is chosen so that the steady-state labor, n, is 0.2.
38Equivalently, we can set σ = 1 and εt+1 ∼ i.i.d (0, σ2).

30



A one-time productivity shock We first look at the a one-time shock to productivity (at

period 0), depicted in Figure 1. The size of the shock is three standard deviations and the economy

was at the the steady state prior to the shock. For each variable in the figure, we compare the

responses based on the first-order and the second-order approximate solutions in (21)-(22) and

(32)-(33), respectively.

Looking first at the top four panels, a three-standard-deviation positive productivity shock

translates to a roughly 2.1% increase in productivity on impact. Since At follows a log-linear AR(1)

process, it follows then the second-order responses are identical to those in the first order. Higher

productivity level leads to higher aggregate output, consumption, and investment rate. As described

above, the rise in investment rate has both the intensive and extensive margin effects. That is, since

the marginal product of capital and the capital price (marginal Q) increase in response to a positive

shock to productivity, both the investment target for each capital-adjusting firm and the number of

firms investing (the hazard rate) also rise. Comparing the first- and second-order responses across

the top four panels, we see that there are some sizeable differences quantitatively. Interestingly,

consumption increases by less on impact and exhibits a hump-shaped response when the model is

solved to the second order – this hump-shaped feature is not present in the first-order response.

The investment rate also increases by about 3% more on impact in the second-order approximation

compared to that in the first order. This is a sizeable difference, considering that the size of the

shock to productivity is quite small. The higher increase in the investment rate translates to higher

output responses in the second order approximation. These quantitative differences persist for a

number of periods after the initial impact of the shock.

The explanation behind the differences between the first- and second-order responses, particu-

larly on the investment rate, is provided in the bottom four panels of Figure 1. The higher increase

in the investment rate in the second-order approximation is fueled entirely by a much higher in-

crease in the hazard rate – here, it increases by roughly 3.5% more in the second order on impact

compared to that in the first order. Putting it differently, based on the second-order approximation

there is now about 35% more firms (3.5%/10%) that choose to adjust on impact compared to when

the model is solved to the first order. This increase in the extensive margin is more than enough to

offset the lower increase in the investment target (the intensive margin effect) in the second-order

approximation. The fixed cost cutoff seems to increase by less in the second-order approximation,

but this is by no means contradicts the higher increase in the hazard rate. Finally, the higher

investment rate in the second order approximation also translates to a higher increase in capital
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stock – this is especially visible in the latter periods. We note that without the lumpy investment

feature in the model, the two approximation orders produce virtually identical responses for all

variables.

The results in Figure 1 thus show that although qualitatively largely similar, the responses

based on the first- and second-order approximate solutions could be quite different quantitatively.

These differences may matter for other practical applications such as forecasting and simulation, to

name a few. This is also true for other models that feature state-dependent agents’decision, such as

the pricing model of Dotsey, King, and Wolman (1999).39 For these models, solving the model only

up to a first order approximation may not appropriately capture the important nonlinear elements.

Repeated productivity shocks Notice that from the second-order state-space form solution in

(32)-(33), if the economy is assumed to be at the steady state prior to a shock, there is no state-

dependent effect of the shock. That is, the vec(dst−1ηTt ) is always zero for all periods since dst−1 = 0

prior to the shock. Although this by no means precludes the second-order solution capturing the

nonlinearity effect of the model, this suggests that the differences between the responses based on

the first- and second-order approximations could be more pronounced when the economy were not

initially at the steady state. To capture this state-dependent effect of the shock, we conduct an

experiment where the economy is hit by two consecutive three-standard-deviation shocks, each in

the first and second periods (periods 0 and 1). This means that in the second period, dst−1 6= 0,

so that the effect of the shock is state-dependent from the second period onwards.

Figure 2 displays the impulse responses for this repeated-shock experiment. It is clear that for all

variables, the quantitative differences are now even larger compared to those in the one-time shock

case in Figure 1. For example, the investment rate is only about 15% higher ((23% − 20%)/20%)

in the second order approximation on impact in the first period compared to that in the first-

order approximation (identical to the one-time shock case). However, in the second period when

the economy is again hit by a three-standard-deviation productivity shock, the investment rate is

now about 26% higher ((48% − 38%)/38%) when the model is solved to the second order. This

result indicates again the potential gain in solving the model up to a second-order (or higher)

approximation.

39The extent of the differences, of course, depends on the specification of other elements in the models, e.g. the
shape of the fixed cost distribution in our application.
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6 Conclusion

This paper presents a novel and straightforward approach in computing the approximate solutions

to nonlinear rational expectations models, based on a differential version of Taylor series approx-

imations. The approach can be applied to any order of approximation and the resulting solution

for any order can always be directly cast in a linear state-space form, permitting the solution to

be used for many practical applications such as forecasting, estimation, and computing impulse

responses. Using the approach, we have shown that there cannot be multiple solutions in any

order of approximation if the associated first-order approximate solution is determinate. Since our

approach permits the use of linear rational-expectations solution methods, the solutions can be

obtained much faster and more effi ciently. While the paper only provides an explicit solution up to

a third-order approximation, extensions to any higher order approximations are straightforward, al-

beit tedious. In terms of applications, our approach seems particularly suited for analysis of models

in which there is a high degree of nonlinearity and uncertainty such as models with state-dependent

agents’decisions and asset pricing models.

In terms of practical applications, the fact that the state-space form is linear for any approxi-

mation order means that the standard Kalman filter can be used to obtain the likelihood functions

and estimate the parameters and latent states of DSGE models when these models are solved to

higher than a first-order (linear) approximation. A recent paper by Kollman (2013) has taken a step

on this front for a second-order approximation, but in principal, we can apply the same strategy

for any higher order. In terms of future research extensions, we believe that our approximation

strategy can be applied to solve Markov-switching models to any higher order as well, given its

straightforward nature – perhaps using an algorithm similar to that in Farmer, Waggoner, and

Zha (2011) for linear models. Finally, while we presently only focus on computing the unique solu-

tion in each approximation order, it is also possible to extend the approach to encompass sunspot

solutions, in a manner similar to Lubik and Schorfheide (2004) for a first-order approximation.
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Figure 1: Q-theory model – Impulse response to productivity shock
One-time, 3 standard-devation shock
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Note: "1st" and "2nd" refer to the responses based on the first- and
second-order approximate solutions, respectively.
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Figure 2: Q-theory model – Impulse response to productivity shock
Repeated (two-period), 3 standard-devation shocks
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APPENDICES

"Straightforward Approximate Stochastic Equilibria for Nonlinear Rational Expec-
tations Models" (Johnston, King, and Lie, 2014)

[last modified on 25 August 2014]

A Computation using LRE method and the existence and unique-
ness of the solution

1 Overview

In this appendix, we describe one of the linear rational expectations solution methods that can
be employed for our approximation strategy (to any order). The method is based on the QZ
decomposition as in prior work of Sims (2002), Klein (2000), and Kim, Kim, Schaumburg and Sims
(2008). As in Sims, the algorithm described here does not rely on the user specifying which variables
are predetermined and non-predetermined. The notations in this appendix are self-contained and
may overlap with those in the main text.

The differentials of our non-linear rational expectations model suggests the importance of study-
ing the linear rational expectations model of the form

A1yt+1 = B1yt + C1xt+1 (1)

A2Etyt+1 = B2yt + C2Etxt+1 (2)

with the driving process being

xt = γ + γwwt−1 + γvvt (3)

wt = φ+ φwwt−1 + φvvt (4)

with vt ∼ N (0,Ω). We are interested in obtaining the following recursive solution:

yt = θy + θykkt + θywwt (5)

kt = θk + θkkkt−1 + θkwwt−1 + θkvvt (6)

We will refer to Equation (5) as the observation equation, and Equation (6) as the state equation,
as is common in the state space econometrics literature. All of the coeffi cient matrices and the
variables kt are to be determined. However, the derivations make clear how one could also compute
perfect foresight solutions for specified paths of x. In (5) we make yt to depend contemporaneously
on wt and kt (and a constant, θy) – yet it’s clear that by employing the state equation (6), one
can also make yt to depend directly on wt−1, kt−1, and vt along the lines of Watson (1989).

We will proceed in two steps. First, consider the expectational system implied by the law of
iterated expectations,

AEtyt+1 = Byt + CEtxt+1 (7)

and find a solution of the form

kt = θk + θkkkt−1 + θkwwt−1

yt = θy + θykkt + θywwt

1



Second, solve for the innovations θkvvt in (6) using

A1 (yt+1 − Etyt+1) = C1 (xt+1 − Etxt+1)

a direct implication of Equation (1).
For dimension and sizing information, let n (A) denote the number of rows of A, and m (A)

denote the number of columns of A. Let r (A) denote the rank of the matrix A, and let λi (A)
denote the ith eigenvalue of the matrix A. Finally, let A∗ denote the complex conjugate transpose
of A.

2 Expectational System

A conditional expectation of (1) and (2) leads to a standard rational expectations model that has
been much studied in the literature, Equation (7), which we repeat for convenience

AEtyt+1 = Byt + CEtxt+1

A solution to this system allows us to (i) determine a vector of state variables k in the recursive
solution (6); (ii) the matrix θkk in (6); and (iii) the matrix θyk in (5). These state variables and
matrices are not unique, but are determined up to a nonsingular transformation.1

We assume there exists a scalar α such that det |A−Bα| 6= 0 so that the matrix pencil (A,B)
is regular (see Definition 4.2 of Stewart (2001)). Under this condition, Theorem 4.5 of Stewart
(2001) establishes that A and B can be jointly decomposed into upper triangular matrices N and
J and orthonormal matrices Q and Z such that Q∗Q = Z∗Z = I and2

QNZ = A

QJZ = B

We also assume that there are no unit roots |A−B| 6= 0, although we discuss ways of relaxing
this assumption below.

Multiplying the system (6) by Q∗, we see that there is an equivalent block diagonal system[
Nss Nsu

0 Nuu

]
Et

[
st+1
ut+1

]
=

[
Jss Jsu
0 Juu

] [
st
ut

]
+

[
Ψs

Ψu

]
Etxt+1

with

Ψ =

[
Ψs

Ψu

]
= Q∗C

As in some prior literature, we refer to st as the stable canonical variable vector and to ut as the
unstable canonical variable vector. These canonical variable vectors are linked to the original vector
of endogenous variables yt through the transformation[

st
ut

]
= Zyt (8)

1For example, if k is the vector of state variables which we determine and G is an invertible square matrix of
the same dimension, then we can always replace k with k̂ = Gk and employ the solution matrices θ̂kk = θkG

−1 and
θ̂yk = θykG

−1.
2 If we need the decomposition to be unique, we can choose the Weierstrass form of the decomposition,

A− αB = Q (JA − αJB)Z−1

such that the matrix pencil A−αB is transformed to a block diagonal matrix pencil JA−αJB , with upper triangular
blocks for each eigenvalue. The Weierstrass form is to QZ as Jordan form is to Schur. It similarly shares the numerical
instability properties of the Jordan canonical form, so we will use a non-unique upper triangular QZ in practice.
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and the partitioning of the block diagonal system is such that there are ns variables st associated

generalized eigenvalues
∣∣∣ JiiNii

∣∣∣ < 1.3 Let R ≡ Z∗ be the reverse transformation from yt to canonical

variables.
The separated equation for ut can be solved forward as

ut = J−1uuNuuEtut+1 − J−1uu ΨuEtxt+1 (9)

= −
∞∑
j=1

(J−1uuNuu)j−1J−1uu ΨuEtxt+j

provided limj→∞(J−1uuNuu)j = 0, a condition which is satisfied given our ordering of roots and
assumption against unit roots. Given the forcing dynamics (5) and (6), this implies that

ut = gu + guwwt (10)

where the details of calculating gu and guw are described further below, after specification of a
driving process.

The separated equation for st is

Etst+1 = (N−1ss Jss)st − (N−1ss Nsu)Etut+1 + (N−1ss Jsu)ut + (N−1ss Ψs)Etxt+1

and the forcing dynamics (5) and (6) similarly imply

Etst+1 =
(
N−1ss Jss

)
st + gs + gswwt (11)

where the details of calculating gs and gsw are described further below.
We have now identified a state vector, kt = st (although this may not be of minimum dimension)

and we have determined that the coeffi cients in the state evolution equation are

θk = gs

θkk = N−1ss Jss

θkw = gsw

which highlights the fact that state dynamics are governed by stable eigenvalues.
Next, from (8) and (10),

Zyt =

[
st

gu + guwwt

]
=

[
0
gu

]
+

[
Is
0

]
st +

[
0
guw

]
wt

⇓

yt = Z∗
[

0
gu

]
+ Z∗

[
Is
0

]
st + Z∗

[
0
guw

]
wt

Using the fact that kt = st, this formula provides the coeffi cients θyk and θyw,

θy = Z∗
[

0
gu

]
θyk = Z∗

[
Is
0

]
θyw = Z∗

[
0
guw

]
although we have yet to provide the detailed formulas for calculating gu and guw, but will do so in
Section (1.4) below.

3These generalized eigenvalues are the roots of |Nr − J | = 0
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3 Complete System with Innovations

To this point, we have determined how the stability criterion influences the recursive solution via
the selection of the state variable (kt) and described the determination of the feedback coeffi cients
θyk and θkk. Our next task is to determine the nature of the innovations to the system.

3.1 Existence and Uniqueness

We now proceed to solve for coeffi cient {θkv} in (6) using Equation (1), which has the implication
that

A1 (yt+1 − Etyt+1) = C1 (xt+1 − Etxt+1) (12)

The innovations implied by (9) are

ut+1 − Etut+1 = −
∞∑
j=1

(J−1uuNuu)j−1J−1uu Ψu (Et+1xt+j+1 − Etxt+j+1) (13)

Equation (12) and the variable transformation (8) imply that

A1
[
Rs Ru

] [ st+1 − Etst+1
ut+1 − Etut+1

]
= C1 (xt+1 − Etxt+1)

where R =
[
Rs Ru

]
is the transformation defined earlier which maps yt to canonical variables.

Let Ã = A1Rs. Using (13) and some rearrangement, we have that

Ã (st+1 − Etst+1) =
∞∑
j=0

B̃j (Et+1xt+j+1 − Etxt+j+1)

where B̃0 = C1 and B̃j = A1Ru
(
J−1uuNuu

)j−1
J−1uu Ψu for j > 0. We can see that it will be possible

to solve this system for (st+1 − Etst+1) provided that

span

({
B̃j

}n(yt)−n(kt)
j=0

)
⊂ span

(
Ã
)

(14)

an existence condition which is analogous to Equation (41) on page 11 of Sims (2002).4

Using the standard SVD,

Ã = UΣV ∗

so that

ΣV ∗ηt+1 = U∗
∞∑
j=0

B̃j (Et+1xt+j+1 − Etxt+j+1)

4Define Kj (M,S) ≡ span
(
S, MS, · · · , M j−1S

)
for square M and conformable S.Then Kj (M,S)

is a block Krylov space. Furthermore, observe that Kj (M,S) ⊆ Kj+1 (M,S). By Lemma 5 of Gutknecht
and Schmelzer (2009) and the general properties of Krylov subspaces outlined in Proposition 1 of their paper,
Kj (M,S) = Kj+1 (M,S) for j ≥ n (M) and Kn(M) (M,S) is the smallest M -invariant subspace that contains S.
This is why it is suffi cient to check that Kn(M) (M,S) ⊆ span (A1Rs) instead of K∞ (M,S) ⊆ span (A1Rs) as it
might seem.
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where r = r
(
Ã
)
is the number of non-zero singular values in Σ. It is possible to write this as a

partitioned system in a way that makes the location of zeros clear,[
Σ11 0r,n(k)−r

0n(A1)−r,r 0n(A1)−r,n(k)−r

]
V ∗ηt+1 =

[
T1
T2

] ∞∑
j=0

B̃j (Et+1xt+j+1 − Etxt+j+1)

for U∗ =

[
T1
T2

]
. Obviously if r

(
Ã
)
< n (A1) so that the T2 partition exists, then T2 = 0 is a

necessary condition for existence. If the existence condition (14) is satisfied, it should be possible
to meet this requirement as well. Observe that[

U11 U12
U21 U22

] [
Σ11 0r,n(k)−r

0n(A1)−r,r 0n(A1)−r,n(k)−r

] [
V11 V12
V21 V22

]
=

[
U11Σ11V11 U11Σ11V12
U21Σ11V11 U21Σ11V12

]
so that only the first r

(
Ã
)
columns of U really matter, and we can chose U12 = U22 = 0 so that

T2 = 0.
If there are columns of zeros in Σ, then the solution is not unique. We require

n (kt) = r
(
Ã
)

(15)

for uniqueness.

3.2 Structure of General Solution

Taking the existence condition (14) as satisfied, the fundamental solution for ηt+1 = (st+1 − Etst+1)
is a vector η such that

Ãηt+1 =
∞∑
j=0

B̃j (Et+1xt+j+1 − Etxt+j+1)

holds as an identity and the B̃j defined previously. The general solution for the innovations is thus

ηt+1 = Ã+
∞∑
j=0

B̃j (Et+1xt+j+1 − Etxt+j+1) +
(
I − Ã+Ã

)
ζt+1

where ζ is a free vector and Ã+ is the Moore-Penrose generalized inverse of Ã, which can be
constructed using the singular value decomposition. The first component of this expression, which
we will refer to as the fundamental component, arises if the solution is unique (in which case(
I − Ã+Ã

)
= 0) or if there are multiple solutions, so that we concentrate on determining it.

The fundamental component of the solution is then

ηft+1 = V Σ+U∗
∞∑
j=0

B̃j (Et+1xt+j+1 − Etxt+j+1)

which is the general solution, above, when the non-fundamental component is set to zero. Recall
from the specification of the state equation in equation (6) above that

kt+1 − Etkt+1 = θkvvt+1
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and that kt = st so that

θkvvt+1 = V Σ+U∗C1(Et+1xt+1 − Etxt+1) (16)

+V Σ+U∗
∞∑
j=1

A1Ru
(
J−1uuNuu

)j−1
J−1uu Ψu (Et+1xt+j+1 − Etxt+j+1)

4 Implications of the driving process

The expression (16) holds for a wide range of stochastic processes for x. We now derive the
implications of the driving process (3) and (4). First, it is direct that

Et+1xt+1 − Etxt+1 = γvvt+1 (17)

Et+1xt+j+1 − Etxt+j+1 = γw (φw)j−1 φvvt+1 for j > 0

so that it is important to determine the matrix sum that arises when (16) is combined with (17),
i.e.,

H ≡
∞∑
j=1

(
J−1uuNuu

)j−1
J−1uu Ψuγw (φw)j−1 , (18)

which may be shown to be equivalent to the matrix equation

H − J−1uuNuuHφw = J−1uu Ψuγw

by a small amount of algebra.5 Because this matrix equation is a contraction mapping inH it can be
solved using iterative methods, or as vec (H) =

(
I −

(
φ∗w ⊗ J−1uuNuu

))−1
vec

(
J−1uu Ψuγw

)
. There is a

unique solution if and only if
(
J−1uuNuu

)
and (φ∗w)−1 have disjoint spectra, i.e., λi

(
J−1uuNuu

)
λj (φ∗w) 6=

1, ∀i, j (Jonsson and Kagstrom (2002)), a condition which is clearly satisfied by construction of
J−1uuNuu and assumption of stationarity in the driving process.

Proposition 1 Define H (x) = J−1uu (Nuuxφw −Ψuγw). Then H (x) is a contraction mapping.

Proof. Anm by nmatrix A is a linear map from x in Rn to y in Rm, so let ‖A‖2 denote the operator
norm induced on A when the L2 norm is applied to both x and y. Using sub-multiplicativity of

5For the purpose of this footnote write the sum as

H =

∞∑
j=1

Aj−1BCj−1

= B +ABC +A2BC2 + ...

where A,B, and C have distinct meanings from the main text. Then, an implication is that

AHC = ABC +A2BC2 + ...

so that
H −AHC = B

Hence, we may solve for the elements of H via

vec (H) =
(
I −

(
CT ⊗A

))−1
vec (B)

6



operator norms,

‖H (x)−H (y)‖2 =
∥∥J−1uuNuu (x− y)φw

∥∥
2

≤
∥∥J−1uuNuu

∥∥
2
‖x− y‖2 ‖φw‖2

= τ ‖x− y‖2

for τ =
∥∥J−1uuNuu

∥∥
2
‖φw‖2 < 1 because all of the eigenvalues of J−1uuNuu and φw are stable, and the

norm ‖A‖2 is the square root of the largest eigenvalue of A∗A (equivalently, the largest singular
value of A).

Hence, we may write the shocks in the recursive representation as

θkvvt+1 = V Σ+U∗ (C1γv +A1RuHφv) vt+1

where we take H to be defined by (18).
Similarly we can use the solution for H to also determine an important coeffi cient matrix left

unspecified above when we wrote ut = gu + guwwt in (10), i.e.6

ut = −
∞∑
j=1

(J−1uuNuu)j−1J−1uu ΨuEtxt+j

= −J−1uu ΨuEtxt+1 −
∞∑
j=2

(J−1uuNuu)j−1J−1uu ΨuEtxt+j

= −Hwt +
(
−
(
I − J−1uuNuu

)−1
J−1uu Ψuγ − Ñφ

)
where

Ñ =
(
I − J−1uuNuu

)−1
J−1uuNuuJ

−1
uu Ψuγw (I − φw)−1 − Ñ2

and Ñ2 =

∞∑
j=2

(J−1uuNuu)j−1J−1uu Ψuγw (I − φw)−1 (φw)j−1

We thus have

gu = −
(
I − J−1uuNuu

)−1
J−1uu Ψuγ − Ñφ

guw = −H

To compute Ñ2, by the same argument as in Proposition 1, Ñ2 is a contraction mapping. Hence,
it can be computed using an iterative method using (see footnote 5)

Ñ2 − (J−1uuNuu)Ñ2φw = J−1uuNuuJ
−1
uu Ψuγw (I − φw)−1 φw

Alternatively, it can be computed directly via

vec
(
Ñ2

)
=
(
I −

(
φ∗w ⊗ J−1uuNuu

))−1
vec

(
J−1uuNuuJ

−1
uu Ψuγw (I − φw)−1 φw

)
6Based on the driving process evolution in (3) and (4), Etxt+1 = γ + γwwt and Etxt+j = γ + γw

j−1∑
h=1

φh−1w φ +

γwφ
j−1
w wt, for j > 1. The summation can be computed as

j−1∑
h=1

φh−1w = (I − φw)−1(I − φj−1w ).
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Further, we also left unspecified gs and gsw in (11), but we can now also manipulate

Etst+1 = (N−1ss Jss)st + (N−1ss Jsu)ut + (N−1ss Ψs)Etxt+1 − (N−1ss Nsu)Etut+1

= (N−1ss Jss)st +
(
N−1ss Jsuguw +N−1ss Ψsγw −N−1ss Nsuguwφw

)
wt

+
(
N−1ss Jsugu +N−1ss Ψsγ −N−1ss Nsu(gu + guwφ)

)
to deduce that

gsw = N−1ss (Jsuguw + Ψsγw −Nsuguwφw)

gs = N−1ss (Jsugu + Ψsγ −Nsu(gu + guwφ))

4.1 The Solution Algorithm and Its Steps

Compute QZ Take the expectational model

AEtyt+1 = Byt + CEtxt+1

and find the decoupled representation

[
Nss Nsu

0 Nuu

]
Et

[
st+1
ut+1

]
=

[
Jss Jsu
0 Juu

] [
st
ut

]
+

[
Ψs

Ψu

]
Etxt+1

via

QNZ = A

QJZ = B

QΨ = C

where the canonical variables are [
st
ut

]
= Zyt

Compute {gu, guw, gs, gsw} Find guw such that

J−1uuNuuguwφw − guw = J−1uu Ψuγw

Thus one way of computing the matrix H = −guw is to guess x and iterate until x = H (x).
The sum H could also be computed directly by discarding terms with j > p for some large integer
p. Alternatively, one may also use tricks involving the vec operator and the Kronecker product
to obtain vec (H) =

(
I −

(
φ∗w ⊗ J−1uuNuu

))−1
vec

(
J−1uu Ψuγw

)
, although this requires computing the

inverse to a potentially large matrix. Compute

gu = −
(
I − J−1uuNuu

)−1
J−1uu Ψuγ − Ñφ

Next, compute

gsw = N−1ss (Jsuguw + Ψsγw −Nsuguwφw)

gs = N−1ss (Jsugu + Ψsγ −Nsu(gu + guwφ))
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Compute {θk, θkw, θkk, θy, θyk, θyw}

θk = gs

θkk = N−1ss Jss

θkw = gsw

θy = R

[
0
gu

]
θyk = R

[
Is
0

]
θyw = R

[
0
guw

]
Check spanning condition A necessary and suffi cient condition for the existence of a solution
is

span

({
C1,

{
A1uZu

(
J−1uuNuu

)j−1 (
J−1uu

)
Ψu

}n(y)−n(k)
j=1

})
⊂ span (A1sZs)

This section closely follows Sims (2002), Section (5). We want to check the spanning condition

span (B) ⊂ span (A)

for two matrices A and B of dimensions m× na and m× nb.
If A is full column rank, then the projection matrix P = A (A∗A)−1A∗ exists, and we can

project B onto A and check to see that we get the original matrix B back in return∥∥∥(I −A (A∗A)−1A∗
)
B
∥∥∥ < ε

If A is less than full column rank, then the projection matrix as defined does not exist. We
need an alternative way of summarizing the column space. Using the SVD once again,

A = UΣV ∗

the columns of U form an orthonormal basis for the subset of Rm spanned by A. Because U is
orthonormal, its projection matrix is just P = UU∗. Thus, we should be able to check that

‖(I − UU∗)B‖ < ε

However, if B is not scaled well, then this may not work well in practice. Another option would
be to use the SVD on B as well,

B = TDW ∗

so that the columns of T likewise form an orthonormal basis for the subset of Rm spanned by B.
Thus we could check

‖(I − UU∗)T‖ < ε

and this would likely be more numerically stable. Note that this only works with the outer product
version of the SVD.
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In summary, create the matrices A and B, above, as:

A = A1Rs

B0 = C1

Bj = A1Ru
(
J−1uuNuu

)j−1 (
J−1uu

)
Ψu, j > 0

and then use the SVD to find orthonormal bases for some subsets of Rm. Then use the basis for A
to project Bj onto the subspace spanned by A and verify that the matrix Bj is recovered within
some tolerance, for all j ≤ n (yt)− n (kt).

Compute errors {θkv} Use SVD
A1Rs = UΣV ∗

to compute
θkv = V Σ+U∗ (C1γv −A1Ruguwφv)
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B The (pseudo) driving processes and the differential solutions

This appendix shows how to obtain the driving process present in the differential restrictions, along
with its evolution. Here we only derive the process up to the 3rd order – however, the general
steps outlined below can be followed for any i-th order of interest. The derivation – for the
particular processes in the 2nd- and 3rd-order differentials – focuses on presenting the elements
of the driving processes as transparently as possible. For computation purpose, there are ways
in which we can make the construction of the driving processes more effi cient – we describe this
alternative representation in a separate technical appendix. For each differential order, we also
provide the solution, as this solution will be needed in order to derive the driving processes in the
next orders.

Recall that for any i-th differential, the general form of restrictions is

A1d
izt+1 = B1d

izt + C
(i)
1 x

(i)
t+1 (19)

A2Etd
izt+1 = B2d

izt + C
(i)
2 Etx

(i)
t+1 , (20)

with the driving process evolves according to

x
(i)
t = γ(i) + γ(i)ς ς

(i)
t−1 + γ(i)v v

(i)
t (21)

ς
(i)
t = φ(i) + φ(i)ς ς

(i)
t−1 + φ(i)v v

(i)
t (22)

The coeffi cient matrices A1 = −Gz′ , A2 = −Fz′ , B1 = Gz, and B2 = Fz are identical for all i-th
differentials. Given these restrictions, the solution for the i-th differential is

dizt = θ(i)y + θ
(i)
ykd

ist + θ(i)yς ς
(i)
t (23)

dist = θ
(i)
k + θ

(i)
kkd

ist−1 + θ
(i)
kς ς

(i)
t−1 + θ

(i)
kvv

(i)
t (24)

In the above, we have directly replaced k(i)t with dist, the i-th differential of the states. For each i,

we need to derive the matrices C(i)1 and C(i)2 , the elements of x
(i)
t , the pseudo or latent states, ς

(i)
t ,

along with their evolutions, and the shock process, v(i)t . The coeffi cient matrices of the state-space
solution in (23) and (24) can then be found using the method described in Appendix A.

Since types of equations ("f" or "g") do not matter for the derivation of the driving process,
we simply use the fully-expectational system of nonlinear equation

0 = EtΓ(zt+1, zt, ηt+1) ,

and define the restrictions in (19) and (20) as

0 = Γz′Etd
izt+1 + Γzd

izt + C(i)Etx
(i)
t+1, (25)

where

Γz′ = −A = −
[
A1
A2

]
Γz = B =

[
B1
B2

]
C(i) ≡

[
C
(i)
1

C
(i)
2

]
We will use the restrictions in (25) when taking the total differentiation for each i below. Note
that: (i) the matrices Γj , j ∈ {z′, z, η′}, are Jacobian matrices consisting of the derivatives of Γ
with respect to each element of j; (ii) for the first-order differential restrictions, C(1) = Γη′ .

11



1 The general steps

We can follow these steps to compute the driving process for any ith order differential restrictions
(for i > 1, since the first order is a special case where there is no driving process beyond ηt+1).

STEP 1: Take the total differentiation of the previous ith−1 differential restriction,
yielding the general form in (19) and (20).

In this step, x(i)t+1 contains various cross (tensor) products of the elements of the lower-order
differential solutions. That is, if we collect the vector of variables zt+1, zt and the vector of shocks
ηt+1 = σεt+1 into a stacked vector

Yt+1 =

 zt+1
zt
ηt+1

 ,
x
(i)
t+1 consists of every (unique) permutation of such cross-products – for example, for i = 2, 3, and

4:

x
(2)
t+1 = [dYt+1 ⊗ dYt+1] ,

x
(2)
t+1 =

[
d2Yt+1 ⊗ dYt+1

dYt+1 ⊗ dYt+1 ⊗ dYt+1

]

x
(3)
t+1 =


d3Yt+1 ⊗ dYt+1
d2Yt+1 ⊗ d2Yt+1

d2Yt+1 ⊗ dYt+1 ⊗ dYt+1
dYt+1 ⊗ dYt+1 ⊗ dYt+1 ⊗ dYt+1


Alternatively, one can also write x(i)t+1 directly in terms of the cross-product of lower-order states

and shocks (see Step 2 below). This alternative representation reduces the dimension of x(i)t+1 and
thus, would be computationally more effi cient.

STEP 2: Given the lower-order differential solutions, determine x(i)t+1 as a function
of cross-products of the lower-order states and shocks. In the process, determine the
new pseudo states, ς(i)t−1, and shocks (a function of the original shocks, ηt+1), v

(i)
t .

This step thus amounts to deriving (21) in the general form above.

STEP 3: Compute the evolution of these new states in a recursive manner, yielding
the form (22).

STEP 4: Collect terms so we have the full system of restrictions (19)-(22), which
now can be solved to yield (23) and (24).

Below, we perform these steps for the 2nd- and 3rd-order differentials.
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2 The second order

STEP 1: Elements of the driving process Total differentiating the 1st-order differential
restrictions,

0 = Γz′Etdzt+1 + Γzdzt + Γη′Etdηt+1

leads to
0 = Γz′Etd

2zt+1 + Γzd
2zt + Etδ

(2)
t+1 , (26)

with

δ
(2)
t+1 ≡ Γz′z′(dzt+1 ⊗ dzt+1) + 2Γz′z(dzt+1 ⊗ dzt) + 2Γz′η′(dzt+1 ⊗ dηt+1)

+Γzz(dzt ⊗ dzt) + 2Γzη′(dzt ⊗ dηt+1) + Γη′η′(dηt+1 ⊗ dηt+1)

The matrices Γjk, j, k ∈ {z′, z, η′}, are Jacobian matrices consisting of the derivatives of Γj matrices

with respect to each element of k. That is, Γhjk ≡ vec

(
∂
∂k

[
Γhj

]T)T
for rows h = 1, ..., nj . Hence,

one way we can write the restrictions, in terms of the fully-expectational general form in (25), is as
follows

AEtd
2zt+1 = Bd2zt + C̃(2)Etx̃

(2)
t+1 ,

with
C̃(2) ≡

[
Γz′z′ 2Γz′z 2Γz′η′ Γzz 2Γzη′ Γη′η′

]
,

x̃
(2)
t+1 ≡



dzt+1 ⊗ dzt+1
dzt+1 ⊗ dzt
dzt+1 ⊗ dηt+1
dzt ⊗ dzt
dzt ⊗ dηt+1
dηt+1 ⊗ dηt+1


The driving process for the 2nd-order differentials thus consists of the cross (tensor) products of the
1st-order differential solution and its driving process. Though transparent, this way of writing the
driving process is, however, not the most effi cient way, since C(i) and x(i)t+1 can get very large fast.

A more effi cient way is to write the driving process x(2)t+1 directly in terms of the cross products of
the state variables and the driving process in the 1st-order, which we undertake below.

Given the 1st-order differential solution

dzt+1 = Πdst+1 (27)

dst+1 = Φsdst + Φηηt+1 , (28)

we have

dzt+1 ⊗ dzt+1 = Πdst+1 ⊗Πdst+1

= (ΠΦsdst + ΠΦηηt+1)⊗ (ΠΦsdst + ΠΦηηt+1)

= (ΠΦsdst ⊗ΠΦsdst) + (ΠΦsdst ⊗ΠΦηηt+1) + (ΠΦηηt+1 ⊗ΠΦsdst)

+(ΠΦηηt+1 ⊗ΠΦηηt+1)

= (ΠΦs ⊗ΠΦs)vec(dstds
T
t ) + (ΠΦη ⊗ΠΦη)vec(ηt+1η

T
t+1)

+(ΠΦη ⊗ΠΦs)vec(dstdη
T
t+1) + (ΠΦs ⊗ΠΦη)vec(ηt+1ds

T
t )
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In the above vec(.) is the matrix vectorization operator. To get to the fourth line from the third line,
we use the following two properties of Kronecker products: (i) for any conformable matrices A, B, C,
and D, (AB⊗CD) = (A⊗C)(B⊗D); and (ii) for any two column vectors a and b, vec(abT ) = b⊗a.
We have also utilized the fact that dηt+1 = ηt+1 and d

jηt+1 = 0 for all j > 1. The expression above
can be further simplified using commutation and duplication matrices (see Magnus and Neudecker,
2002). Let Ds and Dη be the duplication matrix such as Dsvech(dstds

T
t ) = vec(dstds

T
t ) and

Dηvech(ηt+1η
T
t+1) = vec(ηt+1η

T
t+1), respectively – here, vech(S) is a vectorization operator that

chooses only specific elements of the symmetric matrix S (the upper triangular part). Let Ksη be
the commutation matrix such that vec(ηt+1ds

T
t ) = Ksηvec(dstdη

T
t+1). Hence,

dzt+1 ⊗ dzt+1 = (ΠΦs ⊗ΠΦs)Dsvech(dstds
T
t ) + (ΠΦη ⊗ΠΦη)Dηvech(ηt+1η

T
t+1)

+ {(ΠΦη ⊗ΠΦs) + (ΠΦs ⊗ΠΦη)Ksη} vec(dstdηTt+1)
Using similar mechanisms, we also obtain

dzt+1 ⊗ dzt = Πdst+1 ⊗Πdst

= (ΠΦs ⊗Π)Dsvech(dstds
T
t ) + (ΠΦη ⊗Π)vec(dstdη

T
t+1)

dzt+1 ⊗ ηt+1 = Πdst+1 ⊗ ηt+1
= (ΠΦs ⊗ I)Ksηvec(dstη

T
t+1) + (ΠΦη ⊗ I)Dηvech(ηt+1η

T
t+1)

dzt ⊗ dzt = Πdst ⊗Πdst

= (Π⊗Π)Dsvech(dstds
T
t )

dzt ⊗ ηt+1 = Πdst ⊗ ηt+1
= (Π⊗ I)vec(ηt+1ds

T
t ) = (Π⊗ I)Ksηvec(dstη

T
t+1)

Based on the above expressions, the driving process is now given by

δ
(2)
t+1 = C(2)x

(2)
t+1 ,

with

x
(2)
t+1 ≡

 vech(dstds
T
t )

vech(ηt+1η
T
t+1)

vec(dstη
T
t+1)

 (29)

and
C(2) ≡

[
Ĉ
(2)
1 Ĉ

(2)
2 Ĉ

(2)
3

]
,

Ĉ
(2)
1 ≡ Γz′z′(ΠΦs ⊗ΠΦs)Ds + 2Γz′z(ΠΦs ⊗Π)Ds

+Γzz(Π⊗Π)Ds ,

Ĉ
(2)
2 ≡ Γz′z′(ΠΦη ⊗ΠΦη)Dη + 2Γz′η′(ΠΦη ⊗ I)Dη

+Γη′η′Dη ,

Ĉ
(2)
3 ≡ Γz′z′ {(ΠΦη ⊗ΠΦs) + (ΠΦs ⊗ΠΦη)Ksη}

+2Γz′z(ΠΦη ⊗Π) + 2Γz′η′(ΠΦs ⊗ I)Ksη

+2Γzη′(Π⊗ I)Ksη

The matrices C(2)1 and C(2)2 are the first ng rows of matrix C(2) and the last nf rows of matrix C(2),
respectively.
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STEP 2: Driving process as a function of (pseudo) states and shocks Given x(2)t in (29)

the natural candidates for the pseudo state and shock vectors – ς
(2)
t−1 and v

(2)
t in (21) – are

ς̃
(2)
t−1 = vech(dst−1ds

T
t−1)

ṽ
(2)
t =

[
vech(ηtη

T
t )

vec(dst−1ηTt )

]
.

However, for practical purpose, it’s better to define them in terms of deviations from their uncon-
ditional expectations, resulting in a demeaned system. That is, we instead define

ς
(2)
t−1 = vech(dst−1ds

T
t−1 − Ωss) (30)

v
(2)
t =

[
vech(ηtη

T
t − Ωηη)

vec(dst−1ηTt )

]
, (31)

where Ωss = E[dstds
T
t ] and Ωηη = E[ηtη

T
t ].7 Hence, we can write

x
(2)
t =

 vech(dst−1dsTt−1)
vech(ηtη

T
t )

vec(dst−1ηTt )

 = γ(2) + γ(2)ς ς
(2)
t−1 + γ(2)v v

(2)
t , (32)

with the coeffi cients given by

γ(2) ≡

 vech(Ωss)
vech(Ωηη)

0


γ(2)ς ≡

 I
0
0


γ(2)v =

 0 0
I 0
0 I


Each I above is an identity matrix of conformable dimension.

STEP 3: Evolution of the pseudo states The evolution of the pseudo states, ς(2)t , can be found
using the state-evolution equation in the 1st-order differential solution. Given dst = Φsdst−1+Φηηt,

vech(dstdst) = D−1s (Φs ⊗ Φs)Dsvech(dst−1dst−1) +D−1s (Φη ⊗ Φη)Dηvech(ηtη
T
t )

+D−1s [(Φη ⊗ Φs) + (Φs ⊗ Φη)Ksη] vec(dst−1η
T
t )

In deriving the above, we have used the property that for conformable matrices A, B, and C,
vec(ABC) = (CT ⊗ A)vec(B).8 Taking the unconditional expectation of the above expression
yields

vech(Ωss) = D−1s (Φs ⊗ Φs)Dsvech(Ωss) +D−1s (Φη ⊗ Φη)Dηvech(Ωηη) ,

7Since ηt is i.i.d., E[dst−1η
T
t ] = 0.

8See Magnus and Neudecker (2002).

15



which can be used to compute Ωss given Ωηη.9 Combining the two expressions above, the evolution

of ς(2)t is

ς
(2)
t = φ(2) + φ(2)ς ς

(2)
t−1 + φ(2)v v

(2)
t , (33)

with the coeffi cients given by

φ(2) = 0

φ(2)ς = D−1s (Φs ⊗ Φs)Ds

φ(2)v =
[
D−1s (Φη ⊗ Φη)Dη D−1s [(Φη ⊗ Φs) + (Φs ⊗ Φη)Ksη]

]
The elements of the pseudo state and the shock vectors, ς(2)t and v(2)t , are given in (30) and (31).

STEP 4: Compute the differential solution Given the 2nd-order differential restrictions, the
driving process (29) and its evolution in (32), the pseudo state and shock vectors (30) and (31),
and the evolution of the pseudo states in (33), the 2nd-order differential solution is

d2zt = θ(2)y +
[
θ
(2)
yk θ

(2)
yς

] [ d2st
vech(dstds

T
t − Ωss)

]
with the states evolve according to[

d2st
vech(dstds

T
t − Ωss)

]
=

[
θ
(2)
k

0

]
+

[
θ
(2)
kk θ

(2)
kς

0 φ
(2)
ς

] [
d2st−1

vech(dst−1dsTt−1 − Ωss)

]

+

[
θ
(2)
kv

φ
(2)
v

] [
vech(ηtη

T
t − Ωηη)

vec(dst−1ηTt )

]
.

The coeffi cients φ(2)ς and φ(2)v have been computed above. Since the matrices A1, A2, B1, and A2
in the general form of differential restrictions in (19) and (20) are identical for all i-th orders, θ(2)yk
and θ(2)kk are identical to their 1st-order counterparts and hence, are known: θ

(2)
yk = Π and θ(2)kk = Φs.

The rest of the coeffi cients – θ
(2)
y , θ

(2)
yς , θ

(2)
k , θ

(2)
kς , and θ

(2)
kv – can be computed using the linear

solution method described in Appendix A.
We can modify the state-space solution one step further by writing d2st in terms of deviation

from its unconditional expectation. Notice that

E[d2st] = θ
(2)
k + θ

(2)
kkE[d2st−1]

⇓

E[d2s] =
(
I − θ(2)kk

)−1
θ
(2)
k

= (I − Φs)
−1 θ

(2)
k

Hence, the fully-demeaned state-space solution is

d2zt = E[d2z] +
[
θ
(2)
yk θ

(2)
yς

] [ d2st − E[d2s]
vech(dstds

T
t − Ωss)

]
(34)

9An equivalent representation is

vec(Ωss) = (I − Φs ⊗ Φs)
−1(Φη ⊗ Φη)vec(Ωηη)
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[
d2st − E[d2s]

vech(dstds
T
t − Ωss)

]
=

[
θ
(2)
kk θ

(2)
kς

0 φ
(2)
ς

] [
d2st−1 − E[d2s]

vech(dst−1dsTt−1 − Ωss)

]
(35)

+

[
θ
(2)
kv

φ
(2)
v

] [
vech(ηtη

T
t − Ωηη)

vec(dst−1ηTt )

]

where E[d2z] ≡ θ(2)y + θ
(2)
yk E[d2s] is the unconditional expectation of the second differential, d2zt.

3 The third order

For the 3rd order derivation (relevant for STEPS 2 and 3), it’s more convenient to use the non-
demeaned version of the 2nd-order differential solution. That is, from (34) and (35),

d2zt = θ(2)z + θ
(2)
zξ ξ̃

(2)
t (36)

ξ̃
(2)
t = θ

(2)
ξ + θ

(2)
ξξ ξ̃

(2)
t−1 + θ

(2)
ξv ṽ

(2)
t , (37)

with

ξ̃
(2)
t ≡

[
d2st

vech(dstds
T
t )

]
ṽ
(2)
t ≡

[
vech(ηtη

T
t )

vec(dst−1ηTt )

]

θ
(2)
zξ ≡

[
θ
(2)
yk θ

(2)
yς

]
θ(2)z ≡ E[d2z]− θ(2)zξ

[
E[d2s]

vech(Ωss)

]
θ
(2)
ξξ ≡

[
θ
(2)
kk θ

(2)
kς

0 φ
(2)
ς

]

θ
(2)
ξv ≡

[
θ
(2)
kv

φ
(2)
v

]

θ
(2)
ξ ≡

(
I − θ(2)ξξ

)[ E[d2s]
vech(Ωss)

]
− θ(2)ξv

[
vech(Ωηη)

0

]
STEP 1: Elements of the driving process Total differentiating the 2nd-order differential
restrictions in (26) leads to:10

0 = Γz′Etd
3zt+1 + Γzd

3zt + Etδ
(3)
t+1 , (38)

10We utilize the following fact: dηt+1 = ηt+1 and d
jηt+1 = 0 for all j > 1.
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with

δ
(3)
t+1 ≡ 3Γz′z′

(
d2zt+1 ⊗ dzt+1

)
+ 3Γz′z

(
d2zt+1 ⊗ dzt

)
+ 3Γz′η′

(
d2zt+1 ⊗ dηt+1

)
(39)

+3Γzz′
(
d2zt ⊗ dzt+1

)
+ 3Γzz

(
d2zt ⊗ dzt

)
+ 3Γzη′

(
d2zt ⊗ ηt+1

)
+Γz′z′z′ (dzt+1 ⊗ dzt+1 ⊗ dzt+1) + 3Γz′z′z (dzt+1 ⊗ dzt+1 ⊗ dzt)
+3Γz′z′η′

(
dzt+1 ⊗ dzt+1 ⊗ dηt+1

)
+ 3Γz′zz (dzt+1 ⊗ dzt ⊗ dzt)

+6Γz′zη′
(
dzt+1 ⊗ dzt ⊗ dηt+1

)
+ 3Γz′η′η′

(
dzt+1 ⊗ dηt+1 ⊗ dηt+1

)
+Γzzz (dzt ⊗ dzt ⊗ dzt) + 3Γzzη′

(
dzt ⊗ dzt ⊗ dηt+1

)
+3Γzη′η′

(
dzt ⊗ dηt+1 ⊗ dηt+1

)
+ Γη′η′η′

(
dηt+1 ⊗ dηt+1 ⊗ dηt+1

)
The matrices Γjkl, j, k, l ∈ {z′, z, η′}, are Jacobian matrices consisting of the derivatives of Γjk

matrices with respect to each element of l. That is, Γhjkl ≡ vec
(
∂
∂l

[
Γhjk

]T)T
for rows h = 1, ..., nj .

As in the 2nd order, the driving process is function of the cross (tensor) products of all lower-order
solutions and driving processes – for the 3rd order, the relevant lower-order solutions are the 1st-
and 2nd-order differential solutions.

Following the derivation of x(2)t+1 in Section 2, we also represent x
(3)
t+1 directly in terms of the cross

products of lower-order (1st and 2nd) state variables and shocks. Given the 1st- and 2nd-order
differential solutions in (27), (36), and (37), all the cross-product terms in (39) can be written as

functions of various cross products involving dst, ηt+1, ξ̃
(2)
t , and ṽ

(2)
t+1. That is, one can obtain the

driving process as
δ
(3)
t+1 = C(3)x

(3)
t+1 ,

with

x
(3)
t+1 ≡



dst

vec
(
dstξ̃

(2)T
t

)
ηt+1

vec
(
ηt+1ξ̃

(2)T
t

)
vec

(
dstṽ

(2)T
t+1

)
vec

(
ηt+1ṽ

(2)T
t+1

)


(40)

and
C(3) ≡

[
Ĉ
(3)
1 Ĉ

(3)
2 Ĉ

(3)
3 Ĉ

(3)
4 Ĉ

(3)
5 Ĉ

(3)
6

]
, with

Ĉ
(3)
1 ≡

(
θ(2)z ⊗Π

)
Φs +

(
θ
(2)
zξ θ

(2)
ξ ⊗ΠΦs

)
+
(
θ(2)z ⊗Π

)
+
(
θ
(2)
zξ θ

(2)
ξ ⊗Π

)
+
(
θ(2)z ⊗ΠΦs

)
+
(
θ(2)z ⊗Π

)

Ĉ
(3)
2 ≡

(
θ
(2)
zξ θ

(2)
ξξ ⊗ΠΦs

)
+
(
θ
(2)
zξ θ

(2)
ξξ ⊗Π

)
+
(
θ
(2)
zξ ⊗ΠΦs

)
+
(
θ
(2)
zξ ⊗Π

)
+ (γz′z′ ⊗ΠΦs) + (γz′z′ ⊗Π) + (γz′z ⊗Π) + (γzz ⊗Π)

Ĉ
(3)
3 ≡

(
θ(2)z ⊗Π

)
Φη +

(
θ
(2)
zξ θ

(2)
ξ ⊗ΠΦη

)
+
(
θ(2)z ⊗ Iη

)
+
(
θ
(2)
zξ θ

(2)
ξ ⊗ Iη

)
+
(
θ(2)z ⊗ΠΦη

)
+
(
θ(2)z ⊗ Iη

)
18



Ĉ
(3)
4 ≡

(
θ
(2)
zξ θ

(2)
ξξ ⊗ΠΦη

)
+
(
θ
(2)
zξ θ

(2)
ξξ ⊗ Iη

)
+
(
θ
(2)
zξ ⊗ΠΦη

)
+
(
θ
(2)
zξ ⊗ Iη

)
+ (γz′z′ ⊗ΠΦη) + (γz′z′ ⊗ Iη) + (γz′z ⊗ Iη) + (γzz ⊗ Iη)

Ĉ
(3)
5 ≡

(
θ
(2)
zξ θ

(2)
ξv ⊗ΠΦs

)
+
(
θ
(2)
zξ θ

(2)
ξv ⊗Π

)
+ (αz′z′ ⊗ΠΦs) + (αz′z′ ⊗Π)

+ (αz′z ⊗Π)

Ĉ
(3)
6 ≡

(
θ
(2)
zξ θ

(2)
ξv ⊗ΠΦη

)
+
(
θ
(2)
zξ θ

(2)
ξv ⊗ Iη

)
+ (αz′z′ ⊗ΠΦη) + (αz′z′ ⊗ Iη)

+ (αz′z ⊗ Iη) +
(
αz′η′ ⊗ Iη

)
+
(
αzη′ ⊗ Iη

)
+
(
αη′η′ ⊗ Iη

)
In the above, we use Iη and Is to represent nη×nη and ns×ns identity matrices, respectively. The
superscript T denotes matrix transpose. Also, we have used the following compacted representations
of various cross products present in the 2nd-order driving process:

dzt+1 ⊗ dzt+1 = γz′z′ ξ̃
(2)
t + αz′z′ ṽ

(2)
t+1 ,

γz′z′ ≡
[

0 (ΠΦs ⊗ΠΦs)Ds

]
αz′z′ ≡

[
(ΠΦη ⊗ΠΦη)Dη (ΠΦη ⊗ΠΦs) + (ΠΦs ⊗ΠΦη)Ksη

]
dzt+1 ⊗ dzt = γz′z ξ̃

(2)
t + αz′z ṽ

(2)
t+1 ,

γz′z ≡
[

0 (ΠΦs ⊗Π)Ds

]
αz′z ≡

[
0 (ΠΦη ⊗Π)

]
dzt+1 ⊗ ηt+1 = αz′η′ ṽ

(2)
t+1 ,

αz′η′ ≡
[

(ΠΦη ⊗ I)Dη (ΠΦs ⊗ I)Ksη

]

dzt ⊗ dzt = γzz ξ̃
(2)
t ,

γzz ≡
[

0 (Π⊗Π)Ds

]

dzt ⊗ ηt+1 = αzη′ ṽ
(2)
t+1 ,

αzη′ ≡
[

0 (Π⊗ I)Ksη

]
ηt+1 ⊗ ηt+1 = αη′η′ ṽ

(2)
t+1 ,

αη′η′ ≡
[
Dη 0

]
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STEP 2: Driving process as a function of (pseudo) states and shocks Given x(3)t in (40)

the natural candidates for the pseudo state and shock vectors – ς
(3)
t−1 and v

(3)
t in (21) – are

ς̃
(3)
t−1 =

[
dst−1

vec
(
dst−1ξ̃

(2)T
t−1

) ]

ṽ
(3)
t =


ηt

vec
(
ηtξ̃

(2)T
t−1

)
vec

(
dst−1ṽ

(2)T
t

)
vec

(
ηtṽ

(2)T
t

)

 .

As in 2nd order, however, we instead define them in terms of deviations from unconditional expec-
tations, resulting in a demeaned system. That is, we instead define

ς
(3)
t−1 =

[
dst−1

vec
(
dst−1ξ̃

(2)T
t−1 − Ωξs

) ] (41)

v
(3)
t = ṽ

(3)
t =


ηt

vec
(
ηtξ̃

(2)T
t−1

)
vec

(
dst−1ṽ

(2)T
t

)
vec

(
ηtṽ

(2)T
t

)

 , (42)

where the matrix Ωξs = E
[
dst−1ξ̃

(2)T
t−1

]
is still to be determined.11 Hence, we can write the driving

process as

x
(3)
t ≡



dst−1

vec
(
dst−1ξ̃

(2)T
t−1

)
ηt

vec
(
ηtξ̃

(2)T
t−1

)
vec

(
dst−1ṽ

(2)T
t

)
vec

(
ηtṽ

(2)T
t

)


= γ(3) + γ(3)ς ς

(3)
t−1 + γ(3)v v

(3)
t , (43)

with the coeffi cients given by

γ(3) ≡



0
vec (Ωξs)

0
0
0
0



γ(3)ς ≡



Is 0
0 Isξ(2)

0 0
0 0
0 0
0 0


11All elements of ṽ(3)t have zero unconditional expectations.
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γ(3)v =



0 0 0 0
0 0 0 0
Iη 0 0 0
0 Iηξ(2) 0 0

0 0 Isv(2) 0
0 0 0 Iηv(2)

 .

We have used Ix to denote a nx × nx identity matrix (nx is the size of the column vector x) and
Ixy to denote a (nx ∗ ny) × (nx ∗ ny) identity matrix. Various zero vectors or sub-matrices above
are of conformable dimensions.

STEP 3: Evolution of the pseudo states The evolution of the first element of ς(3)t , dst, is
already known from the 1st-order solution. The evolution of the second element can be found using
the state-evolution equations in the 1st- and 2nd-order differential solutions in (28) and (37):

vec
(
dstξ̃

(2)T
t

)
= (θ

(2)
ξ ⊗ Φs)dst−1 + (θ

(2)
ξξ ⊗ Φs)vec

(
dst−1ξ̃

(2)T
t−1

)
+(θ

(2)
ξ ⊗ Φη)ηt + (θ

(2)
ξξ ⊗ Φη)vec

(
ηtξ̃

(2)T
t−1

)
+(θ

(2)
ξv ⊗ Φs)vec

(
dst−1ṽ

(2)T
t

)
+ (θ

(2)
ξv ⊗ Φη)vec

(
ηtṽ

(2)T
t

)
Taking the unconditional expectation of the above expression yields

vec(Ωξs) = (θ
(2)
ξξ ⊗ Φs)vec(Ωξs) ,

which implies Ωξs = 0. The evolution of ς(3)t is then

ς
(3)
t = φ(3) + φ(3)ς ς

(3)
t−1 + φ(3)v v

(3)
t , (44)

with the coeffi cients given by
φ(3) = 0

φ(3)ς =

[
Φs 0

(θ
(2)
ξ ⊗ Φs) (θ

(2)
ξξ ⊗ Φs)

]

φ(3)v =

[
Φη 0 0 0

(θ
(2)
ξ ⊗ Φη) (θ

(2)
ξξ ⊗ Φη) (θ

(2)
ξv ⊗ Φs) (θ

(2)
ξv ⊗ Φη)

]
The elements of the pseudo state and the shock vectors, ς(3)t and v(3)t , are given in (41) and (42).

STEP 4: Compute the differential solution Given the 3rd-order differential restrictions, the
driving process (40) and its evolution in (43), the pseudo state and shock vectors (41) and (42),
and the evolution of the pseudo states in (44), the 3rd-order differential solution is

d3zt = θ(3)y +
[
θ
(3)
yk θ

(3)
yς

] [ d3st

ς
(3)
t

]
with the states evolve according to[

d3st

ς
(3)
t

]
=

[
θ
(3)
k

φ(3)

]
+

[
θ
(3)
kk θ

(3)
kς

0 φ
(3)
ς

][
d3st−1

ς
(3)
t−1

]
+

[
θ
(3)
kv

φ
(3)
v

]
v
(3)
t
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The coeffi cients φ(3) = 0, φ(3)ς and φ(3)v have been computed above. Since the matrices A1, A2,
B1, and A2 in the general form of differential restrictions in (19) and (20) are identical for all i-th
orders, θ(3)yk and θ

(3)
kk are identical to their 1st-order counterparts and hence, are known: θ

(3)
yk = Π

and θ(3)kk = Φs. The rest of the coeffi cients – θ
(3)
y , θ

(3)
yς , θ

(3)
k , θ

(3)
kς , and θ

(3)
kv – can be computed using

the linear solution method described in Appendix A.
We can modify the state-space solution further by writing d3st in terms of deviation from its

unconditional expectation (as in the 2nd order). Notice that12

E[d3st] = θ
(3)
k + θ

(3)
kkE[d3st−1]

⇓

E[d3s] =
(
I − θ(3)kk

)−1
θ
(3)
k

Hence, the fully-demeaned state-space solution is

d3zt = E[d3z] +
[
θ
(3)
yk θ

(3)
yς

] [ d3st − E[d3s]

ς
(3)
t

]
(45)

[
d3st − E[d3s]

ς
(3)
t

]
=

[
θ
(3)
kk θ

(3)
kς

0 φ
(3)
ς

][
d3st−1 − E[d3s]

ς
(3)
t−1

]
+

[
θ
(3)
kv

φ
(3)
v

]
v
(3)
t (46)

where E[d3z] ≡ θ(3)y + θ
(3)
yk E[d3s] is the unconditional expectation of the third differential, d3zt.

Notice that since Ωξs = 0, γ(3) = 0. And since φ(3) = 0, we have θ(3)k = 0 and θ(3)y = 0 (see
Appendix A). Hence, E[d3s] = 0 and E[d3z] = 0, though we have included them in (45) and (46)
for completeness sake. This result does not mean that uncertainties (the stochastic shocks) do not
have any effect on the third-order differential or Taylor-series approximation. In fact, the effect of
uncertainties is indeed presence and is time-varying and state-dependent: it is embedded in vector
ς
(3)
t through the presence of dst.

12E[ς
(3)
t ] = φ(3) = 0.
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C The equivalence between differential Taylor series approxima-
tions and approximating the entire stochastic process

In this appendix, we show that finding an approximation to the entire stochastic process is equiva-
lent to employing a differential version of the Taylor series approximation – this result thus justifies
our approximation strategy in the main text.

For this purpose, we utilize a nonlinear, autoregressive stochastic difference equation,

st = m(st−1, ηt) (47)

For simplicity and without any loss of generality, we assume st to be a scalar and the nonstochastic
stationary point of this difference equation is 0, i.e., 0 = m(0, 0). It is also assumed that {ηt} =
{σεt} are a series of serially independent random variables with mean zero and constant variance
ω = E

[
η2t
]
< ∞. Finally, we assume that ms = ∂m(s,η)

∂s < 1 for all s, η so that the time series
generated by the stochastic difference equation is a stationary stochastic process. This is the sort of
stationarity assumption necessary in any autoregressive model. We focus below on a second-order
approximation – but the result extends to any higher order.

1 Solution and approximation solutions

An exact solution to the stochastic difference equation is a function St ≡ S({ηt−j}∞t=0), which has
the property that

S({ηt−j}∞j=0) = m(S({ηt−1−j}∞j=0), ηt)
Notice that the solution is implicit in this equation, as S appears on both sides.

An approximate solution is another function of {ηt−j}∞j=0 that has specified properties. Using
the perturbation parameter σ to increase the range of uncertainty in all random variables simul-
taneously, we take Taylor series approximations around the nonstochastic stationary point, σ = 0
=⇒ ηt = 0.

1.1 Approximation via partial derivatives (approximating the entire stochastic process)

The direct approach via partial derivatives would be to calculate

st ≈ s+
∂St
∂σ

σ +
1

2

∂2St
(∂σ)2

σ2 .

We pursue this route initially, although it requires considerable work and use of the implicit function
theorem to deduce the partial derivatives ∂St

∂σ and ∂2St
(∂σ)2

.

First order approximation Consider the solution

st = S({ηt−j}∞j=0) .

A first-order Taylor series approximation of this function around the point σ = 0 is

st ' S({0}) +

∞∑
j=0

Sjεt−jσ = S({0}) +

∞∑
j=0

Sjηt−j ,

where Sj = ∂S
∂ηt−j

and these partial derivatives are evaluated at σ = 0 which implies that ηt−j = 0

for all j.
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Application of the implicit function theorem supplies the necessary information on the level and
derivatives above. In terms of the level of the function,

S({0}) = m(S({0}), 0) =⇒ S({0}) = 0 .

In terms of the derivatives of the function, S({ηt−j}∞t=0) = m(S({ηt−1−j}∞t=0), ηt) implies that

S0 = mη

Sj = msSj−1 ,

where mη = ∂m(s,η)
∂η and ms = ∂m(s,η)

∂s , with these partial derivatives being evaluated at s = η = 0.
Accordingly, the first-order approximate solution takes the form

st ' lt =
∞∑
j=0

mη(ms)
jηt−j = mslt−1 +mηηt ,

which is a linear stochastic difference equation.

Second order approximation We now follow the same approach to determine a second-order
approximation to the stochastic difference equation, leading to

st '
∞∑
j=0

Sjεt−jσ +
1

2

∞∑
j=0

∞∑
h=0

Sjhεt−jεt−hσ
2

=

∞∑
j=0

Sjηt−j +
1

2

∞∑
j=0

∞∑
h=0

Sjhηt−jηt−h ,

where Sj = ∂S
∂ηt−j

and Sjh = ∂2S
(∂ηt−j)(∂ηt−h)

. The implicit function theorem applied to S({ηt−j}∞t=0) =

m(S({ηt−1−j}∞t=0), ηt) indicates that

S00 = mηη ,

S0j = msηSj−1 for j > 1 ,

Sjh = mssSj−1Sh−1 +msSj−1,h−1 for j > 1 and for h > 1 .

Working with the new quadratic term in this expression, we note that

qt =

∞∑
j=0

∞∑
h=0

Sjhηt−jηt−h

= S00η
2
t + 2ηt

∞∑
j=1

S0jηt−j +
∞∑
j=1

∞∑
h=1

Sjhηt−jηt−h

= mηηη
2
t + 2msηηtlt−1 +

∞∑
j=1

∞∑
h=1

Sjhηt−jηt−h .

Further, changing the dating and using the implicit function theorem restrictions, we find that

qt = mηηη
2
t + 2msηηtlt−1 +

∞∑
j=0

∞∑
h=0

Sj+1,h+1ηt−1−jηt−1−h

= mηηη
2
t + 2msηηtlt−1 +

∞∑
j=0

∞∑
h=0

[mssSjSh +msSj,h](ηt−1−jηt−1−h) .
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The expression above has a simple recursive form, so that the quadratic (second-order) term in
the approximation is given by

qt = mηηη
2
t + 2msηηtlt−1 +mss(lt−1)

2 +msqt−1 ,

in which qt−1, lt−1 and l2t−1 figure as relevant historical determinants of qt.

1.2 Approximation via differentials

It would not be very convenient if we had to go through all of this detail every time that we wanted
to take a second-order approximation. Fortunately, quite standard differentials provide a short-cut.
We write the Taylor series approximation as

st ' dst +
1

2
(d2st)

and we calculate

dst = ms(dst−1) +mη (dηt)

d2st = mss(dst−1)
2 + 2msη(dst−1)(dηt) +mηη(dηt)

2

+ms(d
2st−1) + mη(d

2ηt) .

With dst, dηt, and d
2st now taking the role of lt, ηt, and qt, respectively, taking differentials thus

produces exactly the same result as when approximating the entire stochastic process (approxima-
tion via partial derivatives). Note that the boxed term above is zero since we are stretching the
distribution according to ηt = σεt, around σ = 0 – that is, dηt = d(σεt) = εt(σ − 0) = ηt and
djηt = 0 for all j > 1. Accordingly, we can use the differential approach to rapidly generate results
from simultaneously stretching all shocks, so long as we are careful in our understanding about how
the nature of the perturbation in σ affects the differentials of endogenous variables and shocks.

The state space representation We now cast the second-order approximate solution in state
space form. First, we have defined the approximation to be the sum of two components, st '
dst + 1

2d
2st. Second, the state vector must contain the three elements dst−1, (dst−1)2 and d2st−1

since these are the relevant history. Further, we know that

(dst)
2 = (msdst−1 +mηηt)

2 = m2
s(dst−1)

2 +m2
ηη
2
t + 2msmηηtdst−1

as an identity. Hence, a state equation for the second order approximation st ' dst + 1
2d
2st evolves

according to

 dst
d2st

(dst)
2

 =

 ms 0 0
0 ms mss

0 0 m2
s

 dst−1
d2st−1

(dst−1)2


+

 0
mηηE

[
η2t
]

m2
ηE
[
η2t
]
+

 mηηt
mηη(η

2
t − E

[
η2t
]
) + 2msηηtdst−1

m2
η(η

2
t − E

[
η2t
]
) + 2msmηηtdst−1

 .

Note that the forecast errors now contain the products of the shock ηt and the state of the system,
dst−1, leading to both state-dependence and conditional heteroskedasticity.
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There is a nonzero mean to d2st and (dst)
2, which can be calculated as

E

[
d2st

(dst)
2

]
=

{
I −

[
ms mss

0 m2
s

]}−1 [
mηηE

[
η2t
]

m2
ηE
[
η2t
] ] ,

so that the second-order approximation no longer displays certainty equivalence in the mean.
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