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1 Introduction

The short-term interest rate, and its behavior over time, is essential for the
relative pricing of bonds and other interest-rate derivatives; for interest-rate
risk management; and as a benchmark for measuring the cost of capital in
the economy. The relationship between short-term rates (or its dynamics)
and long-term rates is also an important aspect of the monetary trans-
mission mechanism. The classic expectations hypothesis about the term-
structure of interest rates remains an important and commonly used result
in macro-economics and monetary policy. (Guidolin and Thornton (2008),
Fedderke and Pillay (2010).) Generally put, it states that long-term rates
are a weighted average of expected (or forecast of) short-term rates, under
a zero or constant risk premium.

The expectations hypothesis is intuitively appealing, and easy to im-
plement. However, as originally shown by Cox, Ingersoll, and Ross (1981)
three decades ago, there are in fact at least three different formulations for
the expectations hypothesis; these are mutually contradictory, except under
highly restrictive conditions; and only one version, applicable only for one
holding period (the "local expectations hypothesis"), is consistent with ra-
tional expectations equilibrium in continuous time. Traditional forms of the
expectations hypothesis generate term structures of interest rates that may
not rule out arbitrage opportunities in the bond market − a highly unde-
sirable feature given the activities of investment banks and hedge funds in
international financial markets. The voluminous empirical evidence is also
largely inconsistent with the traditional expectations hypotheses. (See for
example Ang, Dong, and Piazzesi (2005), and Guidolin and Thornton (2008)
for a recent review.)

The more recent approach to modelling the term-structure of interest
rates focuses on the arbitrage-free pricing of fixed-income securities.1 Most

1The seminal contributions include Cox (1975), Vasicek (1977), Dothan (1978), Bren-
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models in the arbitrage approach were developed in a continuous-time set-
ting, where a diffusion is specified for the evolution of the short-term interest
rate, which in turn is intimately connected to the term-structure through an
arbitrage argument, as further explained below. The stochastic behavior of
short-term rates in these models is consistent with evidence (in for example
Guidolin and Thornton (2008)) that short rates are largely unpredictable at
relatively high frequencies. The continuous-time setting, in addition to im-
mense analytic convenience, is consistent with the high frequency of changes
in market rates.

This paper provides an econometric examination of commonly used sto-
chastic models of the short-term interest rate process. Specifically, we pro-
vide an empirical comparison of alternative non-linear single-factor continuous-
time models for South African short-term interest-rate dynamics using Gaussian
(maximum likelihood) estimation methods. We employ a discretization
scheme due to Bergstrom (1983, 1984, 1985, 1986, 1990) and introduced
to the interest rate modelling literature by Nowman (1997).

South Africa’s fixed-income market is one of the largest among emerging
markets, and its government bond market is the world’s sixth most liquid
by turnover (Bank for International Settlements (2007), p. 45).2 Despite
the current size and liquidity of the South African fixed income market, an
econometric examination of continuous time diffusions for the South African
short-rate, or any other aspect of the arbitrage approach applied to the
South African fixed income market, were hitherto inexistent, to the authors’
knowledge.

Our results are consistent with Chan, Karolyi, Longstaff and Sanders
(1992) and the subsequent literature (see for example Tse (1995) and Now-
man (1997, 1998)), in finding that the sensitivity of interest rate volatil-
ity to the level of the interest rate is the central feature in differentiating
continuous-time interest rate models. Among standard models for short-
term interest rate dynamics, diffusion models which allow the volatility of
interest rates to be a function of the level of the interest rate (a “level ef-
fect”), and restrict this sensitivity to one, provide the best empirical fit for
South African data, in the period following the introduction of inflation

nan and Schwartz (1980), Cox, Ingersoll, and Ross (1980, 1985), and Heath, Jarrow, and
Morton (1992). This list is far from exhaustive however, and the literature continues to
expand, through contributions from researchers in academia as well as the financial sec-
tor - see for example Jamshidian (1997), Brace, Gatarek and Musiela (1997), James and
Webber (2000) .

2See also the press article by Bonorchis, "Global Bank Praises SA Bond Market" in
the Business Day, 10 September, 2007.
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targeting.3 For the prior period, there is only support for the Constant
Elasticity of Variance diffusion (Cox (1975)), which does not restrict the
magnitude of the level effect. Other standard specifications provide a very
poor fit with the data.

The remainder of the paper proceeds as follows. Section 2 presents a
compact treatment of the arbitrage-free term-structure equation, and ex-
plains the relationship between short-rate models and the term-structure of
interest rates. Section 3 discusses related literature. Section 4 describes the
system of single-factor continuous-time models estimated, and explains the
econometric method. Section 5 describes the data, provides a brief overview
of policy changes relevant to the South African fixed-income market, and
presents summary statistics. Section 6 presents the empirical results for the
full sample period, and two sub-samples, separated by the first target year
after the adoption of inflation targeting in South Africa. Section 7 concludes.

2 Theoretic background: the no-arbitrage term-
structure equation

The central aim of the arbitrage approach to interest rate theory (simply
interest rate theory, henceforth), is to explore the relationship between fixed-
income securities prices in an arbitrage-free world. Arguably the most fun-
damental object in this framework, is the no-arbitrage term-structure of
interest rates equation. Its role in interest rate theory is equivalent to that
of the Black-Scholes equation (Black and Scholes (1973)) in general arbitrage
theory; and its derivation is a variation on the now standard Black-Merton-
Scholes arbitrage argument. (Black and Scholes (1973), Merton (1973).)
The term-structure equation summarizes the relationship that must hold
between prices of bonds of different maturities in the absence of arbitrage
opportunities in the fixed income market, and, by extension, arbitrage-free
prices of any interest rate derivative - relative to a benchmark bond. What
follows is a compact treatment of the term-structure equation and its solu-
tion. The aim of this section is to clarify how each of the continuous-time
models for the short-term interest rate is intimately connected to a specific
solution to the term-structure equation; and hence, modelling the short-rate
dynamics is equivalent to modelling the term-structure of interest rates. For
more complete treatments see for example the excellent expositions in Björk

3The standard models examined are Merton (1973), Vasicek (1977), Dothan (1978),
Brennan and Schwartz (1980), Cox, Ingersoll and Ross (1980, 1985), as well as standard
geometric Brownian motion and the Cox (1975) constant elasticity of variance diffusion.
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(1997, 2004) and Duffi e (2001), on which this summary is based.
Let P (t, T ) denote the price at time t of a zero-coupon bond with ma-

turity at time T , and terminal payoff normalized to 1.4 There is a (locally)
risk-free asset, with price B and dynamics

dBt = rtBtdt, (1)

with dynamics of r (the short-rate) given by the stochastic differential equa-
tion:

drt = µtdt+ σtdWt, (2)

where W is a Brownian motion under probability measure P, and µt and σt
are, respectively, the drift and diffusion functions. We can regard P (t, T ) as
a stochastic object with two variables, t and T. If we fix t, then P (T ; t) is
the term-structure at t; if we fix T , then P (t;T ) is a scalar process, giving
prices, at different points in time, of a bond with fixed maturity T . The
rate r is the continually compounding rate of interest on a risk-free (i.e.
deterministic dynamics) security, or bank account process.

To apply arbitrage pricing, we take the price of one particular bench-
mark bond as given, and determine the arbitrage-free prices of all other
bonds (or interest rate derivatives) in terms of the price of the benchmark,
and the assumed dynamics for r. Specifically, let P (t, T ) = F T (t, r), and
P (t, S) = FS(t, r) where F T , FS ∈ Cn,m. The rest of the analysis leading
to the term-structure equation is standard (see the Appendix): apply Itô’s
formula to obtain the dynamics of P (t, T ) and P (t, S); form a portfolio of
the T - and S-bonds; and choose the portfolio weights so that the portfolio
has deterministic dynamics (i.e. it is locally risk-free). In the absence of
arbitrage opportunities, such a portfolio cannot earn more (nor less) than
the risk-free asset. Equating the portfolio returns to the risk-free return
gives the term-structure equation:

∂F T

∂t
+
∂F T

∂r
(µt − λtσt) +

1

2

∂2F T

∂r2
σ2t − rF T = 0, (3)

with terminal condition F T (T, r) = 1 (for zero-coupon bond pricing and the
term-structure of interest rates), and where λ reflects the risk premium in
the bond market.

We now wish to emphasize the connection between the short-rate dynam-
ics and the solution to the term-structure equation − and, by extension, the
pricing of bonds and interest-rate derivatives. Girsanov’s theorem ensures

4Coupon-paying bonds are simple portfolios of zero-coupon bonds.
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the existence of a probability measure Q (commonly known as a martingale
measure), equivalent to P, such that for any process θ, W̃t defined by

W̃t = Wt +

∫ t

0
θsds, (4)

is a Brownian motion under Q.5 Technical conditions aside, from an eco-
nomic viewpoint the existence of a martingale measure is equivalent to
the absence of arbitrage opportunities. (Harrison and Kreps (1979).) Let
θt = µt−(µt−λtσt)

σt
, and substitute 4 (in differential form) into equation 2.

This gives us the r-dynamics under Q:

drt = (µt − λtσt) dt+ σtdW̃t, (5)

where W̃ is a Brownian motion under Q. The Feynman-Kač stochastic rep-
resentation theorem (Duffi e (2001), p.93-94,139, 342-343; Björk (2004), p.
68-72) gives the bond price solution to the term-structure equation in prob-
abilistic form as

F T (t, r) = EQt,r

[
exp

(
−
∫ T

t
rsds

)
× 1

]
, (6)

where r satisfies equation 5.
For more general interest rate claims, simply change the terminal con-

dition to F T (T, r) = φ(r), where φ(r) is the contract function specifying
the derivative’s payoff at maturity. The notation used for the expectation
operator in equation 6, emphasizes the dependence of the solution to the
term-structure equation, obtained as a discounted expectation under a mar-
tingale measure Q, on the probability law implied by the r-dynamics. In
other words, different specifications of the short-term interest rate dynamics
will result in different solutions to the term-structure equation. This point
is made explicit by equation 6.

To summarize: in interest rate theory, the price of a zero-coupon bond
with normalized payoff of given maturity is equal to its discounted expec-
tation (at the risk free rate) under a martingale measure, the existence of
which is guaranteed by the absence of arbitrage, and which is associated
with the risk premium in the bond market. (See the appendix.) This ex-
pectation solves the term-structure equation that must be satisfied by the

5The result is subject to a technical condition on the Girsanov kernel θ (the Novikov
condition), easily satisfied in finance applications. See Duffi e (2001), p.111, 337-338, Björk
(2004), p.160-162, 323-324.
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price of any interest rate claim in the absence of arbitrage opportunities
in the fixed income market. The probability law we use to solve this ex-
pectation, if an analytic solution exists, depends on the specific stochastic
differential equation used to describe the evolution of the short-rate (a de-
fault risk-free instantaneous yield). Thus, subject to a suitable change of
probability measure, associated with a given description of the short-rate
dynamics is a specific arbitrage-free term-structure of interest rates. This
relationship makes the choice of model for short-rate dynamics central for
the arbitrage-free modelling of the term-structure, pricing of fixed income se-
curities (interest rate derivatives in particular), and management of interest
rate risk.

Which short-rate model should be used in a given application is a prac-
tical question. Empirical analysis can help us restrict the set of suitable
models for a given market − especially regarding the treatment of the dif-
fusion (volatility) term.

3 Related literature

Chan, Karolyi, Longstaff and Sanders (1992) (henceforth CKLS) is a contri-
bution of reference to the econometric estimation of single-factor continuous-
time short-rate models. They propose a general representation of continuous-
time interest rate dynamics, which nests a range of standard models as spe-
cial cases, and use the Euler method to obtain a discrete-time approximation
of the continuous-time system. The generalized method of moments (GMM)
technique (Hansen (1982)) is then applied to obtain parameter estimates
and compare the empirical fit of competing specifications for the United
States short-term rate. Tse (1995) applies the same method to examine
the short-rate processes for a group of advanced economies; Brailsford and
Maheswaran (1998) apply it to Australian rates, and McManus and Watt
(1999) to the Canadian term-structure.

It is now known however that, except for exceptionally large samples
(in the region of over one and a half thousand observations), the linear
approximation proposed in CKLS introduces a discretization bias, due to
temporal aggregation, resulting in inconsistent estimators. (Melino (1994),
Baadsgaard, Nielsen, Madsen and Preisel (1996), Yu and Phillips (2001).)

To correct for the bias in the CKLS discretization, Nowman (1997) pro-
posed an application of the method developed by Bergstrom (1983, 1984,
1985, 1986, 1990), whereby an exact discrete-time model is used as the ba-
sis for Gaussian estimation of the parameters of a continuous-time model —
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taking into account the restrictions on the distribution of the discrete-time
data implied by the continuous-time model. The general specification in
CKLS allows for non-constant volatility, which impedes direct application
of Bergstrom’s method. As a solution, Nowman (1997) assumed that the
volatility of the interest rate process changes at the beginning of each unit
observation period, but stays constant over the unit interval. The associated
approximation produces a conditional Gaussian distribution for the short-
rate, from a non-Gaussian process. The parameters can be estimated by
maximum likelihood.

Yu and Phillips (2001) develop an alternative approach to forming a
discrete-time model of continuous-time short-rate models, with Gaussian
errors. Their contribution stems largely from the alternative estimation of
the drift parameters, since the method relies on the Nowman (1997) method
to estimate the diffusion terms. From an applications viewpoint however,
the main benefit of econometric estimation of continuous-time processes is
the estimation of the diffusion parameters. Estimates of drift parameters,
obtained through application of statistical methods to real-world data, can
only be used for bond and derivative pricing if the bond market risk premium
is known, since we are characterizing the short-rate dynamics under the data-
generating measure; but solve the arbitrage-free term-structure equation us-
ing the short-rate probability law under a risk-neutral measure.6 Lastly, the
method, which involves a time-transformation requiring unequally spaced
observations, would run into implementation diffi culties in South Africa’s
relatively high interest rate environment, due to the need to sample the
process more frequently when interest rates are high.

4 Short-rate models and econometric method

4.1 Continuous-time short-rate models

Consider the following stochastic differential equation for the dynamics of
the short-rate,

drt = (α+ βrt) dt+ σrγt dWt, (7)

6Girsanov’s theorem connects the short-rate dynamics under the data-generating prob-
ability measure, and the dynamics under a martingale measure, through the market price
of risk, which pins down the Girsanov kernel. See Duffi e, p111 and 337-338, or Björk
(2004), Proposition 21.4, p.323-324, Theorem 11.3, p. 160-161, and Remark 11.3.2, p.
162.
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where rt is a stochastic interest rate process, Wt is a standard Brownian,
and α, β, γ and σ are unknown structural parameters.7 In this specification
the interest rate reverts to its unconditional mean -αβ , and β is the speed
of reversion to the mean. Notice that both the drift and the conditional
variance of the process are functions of the level of the interest rate. The
parameter γ measures the sensitivity of the variance to the level of the
interest rate.

Table 1 presents a list of standard continuous-time interest rate models,
in the order used in CKLS (with an increasing level effect). Each of the
diffusion models in the second column can be obtained from equation 7 by
imposing appropriate restrictions on parameters α, β and γ (none of the
models impose restrictions on σ). The associated restrictions are shown in
the last three columns of Table 1. The first model is a simple "arithmetic"
Brownian motion with a constant drift parameter α, used by Merton (1973)
to obtain no-arbitrage prices of zero-coupon bonds. It is analytically a very
simple model, but the interest rate can be negative, and both the drift and
volatility of interest rates are constant. The Vasicek (1977), CIR (1985) and
Brennan and Schwartz (1980) models permit mean-reversion in the interest
rate process - i.e. higher (resp., lower) short-rates leading to lower (higher)
drift. Vasicek (1977) is an Ornstein-Uhlenbeck process, with the short-rate
as an auto-regressive process of order 1; CIR (1985) implies a non-central χ2

distribution for interest rate changes. The Dothan (1978) and CIR (1980)
specifications imply no drift in the interest rate process. GBM is the process
used in Black and Scholes (1973), and widely applied to price simple stock
options. It implies a log-normal distribution for interest rates.

7With reference to equation 2, here µt = (α+ βrt), and σt = σrγt .
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Table 1
Parameter Restrictions Imposed by Alternative Short-Rate Models

Model α β γ
Merton (1973) drt = αdt+ σdWt 0 0
Vasicek (1977) drt = (α+ βrt) dt+ σdWt 0

CIR] (1985) drt = (α+ βrt) dt+ σr
1/2
t dWt 1/2

Dothan (1978) drt = σrtdWt 0 0 1
GBM† drt = βrtdt+ σrtdWt 0 1
Brennan-Schwartz (1980) drt = (α+ βrt) dt+ σrtdWt 1

CIR] (1980) drt = σr
3/2
t dWt 0 0 3/2

CEV‡ drt = βrtdt+ σrγt dWt 0
(]): Cox, Ingersoll and Ross
(†): Geometric Brownian Motion
(‡): Constant Elasticity of Variance

These are commonly used single factor models for continuous-time short-
rate dynamics. Perhaps the most noteworthy difference between the alter-
native specifications concerns the modelling of volatility. This is of practical
importance because short-rate volatility is a crucial input for the manage-
ment of interest rate risk. The first two models, Merton (1973) and Vasicek
(1977), treat volatility as constant. As we move down the list, short-rate
volatility becomes increasingly sensitive to the level of the interest rate. The
constant elasticity of variance model (Cox (1975)), henceforth CEV, does
not restrict the magnitude of this sensitivity.

4.2 The Bergstrom-Nowman Gaussian method

The stochastic integral for equation 7 is

rT = rt +

∫ T

t
(α+ βrs) ds+ σ

∫ T

t
rγs dWs. (8)

Suppose we fix the volatility of the short-rate at the beginning of the unit
observation period, so that, over [τ , τ + 1), rt has dynamics

drt = (α+ βrt) dt+ σrγτ dWt, (9)

where τ ≤ t < τ + 1. The stochastic integral is given by

rt = rτ +

∫ t

τ
(α+ βrs) ds+ σrγτ

∫ t

τ
dWs. (10)
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Bergstrom (1984) gives the corresponding exact discrete model as

rt = eβrt−1 +
α

β

(
eβ − 1

)
+ ηt, (t = 1, 2, ..., T ) (11)

with conditional distribution ηt | Ft−1 ∼ N
(
0,m2

t

)
, where

m2
t =

σ2

2β

(
e2β − 1

)
r2γt−1. (12)

The Bergstrom-Nowman method is applied to equation 11. Let θ denote
the parameter vector θ =

(
α, β, γ, σ2

)
. Given the distribution of ηt, the

log-likelihood function for 11 is given by

L (θ) = −1

2

∑T

t=1

[
log
(
2πm2

t

)
+
η2t
m2
t

]
, (13)

where T is the total number of observations. The estimates of the model
parameters are found as θ̂ = arg max

θ
{L (θ)} .

For comparison, we also obtain Gaussian estimates using the CKLS dis-
crete approximation of equation 7, given by:

rt+1 − rt = α+ βrt + ηt+1, (14)

where
Et
(
ηt+1

)
= 0 and Et

(
η2t+1

)
= σ2r2γt . (15)

5 Data, policy environment and descriptive statis-
tics

5.1 Data and policy environment

The short-rate process used in no-arbitrage interest rate theory is an ab-
stract object, denoting an instantaneous rate that has no direct empirical
equivalent. The natural approach is to use default-risk free fixed income
contracts with the lowest maturity available. This is normally the overnight
rate. However, the determinants of the overnight rate can differ from the
forces that drive longer rates. Hence, the overnight rate can be insuffi ciently
closely correlated with other fixed-income market rates. In single-factor
models, in contrast, yields for bonds of different maturities are perfectly
correlated. This is a common assumption, though not strictly accurate, in
bond risk management; and a valid assumption when pricing derivatives

11



subject to one source of risk. (See, for example, James and Webber (2000).)
The widely used alternatives in empirical research are one- and three-month
Treasury bill rates. For example, CKLS use one-month bills; Tse (1995),
Brenner, Harjes and Kroner (1996), and McManus and Watt (1999), use
three-month bills.

We use the rate on the South African three-month (91 days) Treasury
bill, which is commonly used as a market-determined proxy for the domestic
short-term risk-free rate (e.g., Fedderke and Pillay (2010), Hassan and Van
Biljon (2010)), obtained from the South African Reserve Bank. The data
are weekly, taken on the Monday of each week, covering the period from
the 18th of June 1984, to the 18th of July 2011, giving a total of 1322
observations. Figure 1 shows the evolution of the level of the Treasury bill
rate over the 1984-2011 period; Figure 2 shows the evolution of short-term
changes in the three-month interest rate over the same period.

Figure 1
South African Three-Month Treasury-Bill Rate: 1984 —2011
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Figure 2
First Differences of Three-Month Treasury-Bill Rate: 1984 —2011
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We start the sample in the mid-1980s due to the number of policy changes
and extent of Government intervention in the interest rate market until then.
The prevailing regime between 1957 and the early 1980s was a liquid asset
ratio-based system with quantitative controls on interest rates and credit.
This was gradually reformed toward a cash reserves-based system. Pre-
announced, flexible monetary target ranges were used from 1986, with the
main policy emphasis on the central bank’s discount rate in influencing the
cost of overnight collateralized lending and hence market interest rates (Aron
and Muellbauer (2001)). In addition, recent research indicates that South
Africa’s capital controls permitted the South African Reserve Bank to target
domestic interest rates through interventions in the foreign exchange market
(Schaling (2009)). The monetary authorities only began adopting a more
market-oriented policy environment in the late 1970s (Farrell and Todani
(2004)). Lastly, and arguably at least partly as a result of previous policy,
there was virtually no active secondary market for trading in government
securities in South Africa until 1982 (McLeod (1990)).

The exceptionally high interest rate volatility in the mid to late 1980s
reflects the country’s political instability during the pre-1994 political dis-
pensation. The level and magnitude of up and down movements in the inter-
est rate decrease gradually from the late 1990s. In 2000, the South African
monetary authorities adopted inflation targeting as policy, with 2002 as the
first target year. This policy intervention may affect short-term interest rate
dynamics and indicates a natural sample split. We present results for the
full sample period; and separately for the periods before and after inflation
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targeting.

5.2 Descriptive statistics

Table 2 shows the summary statistics for the full sample period, and the two
sub-samples. It shows the means, standard deviations and autocorrelations
of the South African three-month Treasury bill rate, and the first differences
for the same series. The variable r(t) denotes the level of the interest rate,
and∆r(t) is the weekly change in r. T represents the number of observations
used; SD is the standard deviation; ρj denotes the autocorrelation coeffi cient
of order j; ADF denotes the Dickey-Fuller-Saïd (Saïd and Dickey (1984))
unit root statistic, or Augmented Dickey-Fuller, with a five percent critical
value of -2.860.

Table 2
Summary Statistics

T Mean SD ρ1 ρ2 ρ3 ρ4 ρ5 ADF
A. Full sample period: 1984-2011

r(t) 1322 11.909 3.94 0.94 0.93 0.92 0.92 0.92 -1.12
∆r(t) 1321 —0.009 0.24 0.22 0.15 0.14 0.05 0.07 -27.17

B. Period prior to inflation targeting: 1984-2002
r(t) 865 13.733 3.44 0.95 0.94 0.93 0.92 0.92 -1.00
∆r(t) 864 -0.012 0.27 0.21 0.15 0.15 0.06 0.05 -22.39

C. Period under inflation targeting: 2002-2011
r(t) 457 8.457 2.05 0.92 0.90 0.89 0.88 0.88 -0.06
∆r(t) 456 -0.005 0.14 0.30 0.12 0.10 0.06 0.13 -14.23
T is the number of (weekly) observations; SD is the standard deviation.
Means and standard deviations are in percentage terms.

The inflation targeting period is associated with a much lower average
level, and lower volatility of the Treasury bill rate. The average rate of
interest on three-month bills reduced from 13.7 to 8.4 percent; its standard
deviation reduced from 3.4 to 2 percent. The autocorrelations of the level
variable fall off slowly, whilst the autocorrelations of the first differences are
small and neither systematically positive nor negative. This indicates the
presence of a unit root, confirmed by the ADF statistic which fails to reject
the null hypothesis of a unit root at the 5 percent level of significance.
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6 Results

We present the Gaussian estimation results from the unrestricted model
and the eight nested term-structure models obtained after imposing the
appropriate restrictions on the general model. We contrast the fit of the
different models to the unrestricted model by comparing the maximized
Gaussian likelihood function values, and performing likelihood ratio tests.
Each table shows the Gaussian coeffi cient estimates; their standard errors;
maximized log likelihoods for the unrestricted and eight nested models; and
the likelihood ratio tests comparing the nested models with the unrestricted
model.

6.1 Results for the full period

Table 3 reports the results using the entire series. Based on the maxi-
mized Gaussian likelihood values, compared with that of the unrestricted
model, the CEV model performs best, followed by the CIR (1985), Brennan-
Schwartz, GBM and Dothan models. All the best performing models include
a γ coeffi cient greater than zero - indeed, equal to or greater than one, ex-
cept for the CIR (1985) model. This finding suggests that the conditional
volatility is dependent on the level of the interest rate - a "level effect".
However, using the χ2 likelihood ratio test under the null hypothesis that
the nested model restrictions are valid, we can reject the Merton, Vasicek,
CIR (1985), Dothan, GBM, Brennan-Schwartz and CIR (1980) models. We
only fail to reject the CEV model.

Both the unrestricted and CEV models estimate γ at 0.743, and the
estimates are statistically significant. There is no clear evidence of a linear
trend: in all models, estimates of α are very close to zero, negative for
Merton and Brennan-Schwartz, positive for the others. There is only weak
evidence of mean-reversion: most models produce negative estimates of β,
but these are very close to zero (we expect α > 0, β < 0). The parameters
α and β are not statistically significant in the unrestricted model.

Interestingly, observe that the asymptotic bias resulting from the CKLS
approximation is very small. The estimates are almost identical under the
CKLS and Bergstrom-Nowman approaches.
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Table 3
Gaussian Estimates of Continuous-Time Models of the Short-Rate, 1984-2011

Full sample, 06/1984 - 07/2011
Model α β 2σ γ Log

Likelihood
2χ Test Df

Unrestricted 0.0022499 ­0.0009125 0.0052775* 0.743457* 273.57399
(0.0139) (0.0015249) (0.0008224) (0.0318389)

CKLS 0.0022489 ­0.0009121 0.0052727* 0.7434571* 273.57399
(0.0138921) (0.0015235) (0.0008214) (0.0318389)

Merton ­0.009808 0.0 0.2406477* 0.0 6.853248 533.44 2
(0.0068065) (0.004813) (< 0.0001)

CKLS ­0.009808 0.0 0.2406477* 0.0 6.8532478 533.44 2
(0.0068065) (0.004813) (< 0.0001)

Vasicek 0.0132824 ­0.0019315 0.2409914* 0.0 7.4831682 532.18 1
(0.0216835) (0.001722) (0.0048376) (< 0.0001)

CKLS 0.0132695 ­0.0019296 0.2405265* 0.0 7.4831682 532.18 1
(0.0216516) (0.0017187) (0.0048105) (< 0.0001)

CIR SR 0.0052371 ­0.0012244 0.0176116* 0.5 244.22069 58.71 1
(0.0155273) (0.001536) (0.0003533) (< 0.0001)

CKLS 0.0052339 ­0.0012237 0.01759* 0.5 244.22069 58.71 1
(0.015514) (0.0015341) (0.0003518) (< 0.0001)

Dothan 0.0 0.0 0.0015592* 1.0 240.55416 66.04 3
(0.0000312) (< 0.0001)

CKLS 0.0 0.0 0.0015592* 1.0 240.55416 66.04 3
(0.0000312) (< 0.0001)

GBM 0.0 0.0006526 0.0015589* 1.0 241.62514 63.90 2
(0.0004459) (0.0000312) (< 0.0001)

CKLS 0.0 0.0006524 0.0015578* 1.0 241.62514 63.90 2
(0.0004456) (0.0000312) (< 0.0001)

Brennan­Schwartz ­0.000964 ­0.0005411 0.0015587* 1.0 241.62794 63.89 1
(0.0128688) (0.0015542) (0.0000313) (< 0.0001)

CKLS ­0.0009638 ­0.0005409 0.015578* 1.0 241.62794 63.89 1
(0.012866) (0.0015534) (0.0000312) (< 0.0001)

CIR VR 0.0 0.0 0.0001658* 1.5 9.3623157 528.42 3
(0.00000332) (< 0.0001)

CKLS 0.0 0.0 0.0001658* 1.5 9.3623157 528.42 3
(0.00000332) (< 0.0001)

CEV 0.0 ­0.0006778 0.0052729* 0.7435914* 273.56088 0.03 1
(0.0004734) (0.0008212) (0.0318305) (0.8714)

CKLS 0.0 ­0.0006776 0.0052693* 0.7435914* 273.56088 0.03 1
(0.004731) (0.0008206) (0.0318305) (0.8714)

6.2 Results for the period prior to inflation targeting

The results are qualitatively very similar for the sample period prior to
inflation targeting (865 observations, from 18 June 1984 to 28 January 2002),
which represents two-thirds of the full sample. We find the same pattern of
results, with a marginally lower level effect (γ = 0.71 for the unrestricted
model), and the CEV model offering the best fit with the data by a wide
margin.
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Table 4
Gaussian Estimates of Continuous-Time Models of the Short-Rate

Before inflation targeting, 06/1985 - 01/2002
Model α β 2σ γ Log

Likelihood
2χ Test df

Unrestricted 0.0266469 ­0.0028382 0.0058842* 0.7197319* ­7.9214722
(0.0322502) (0.0027097) (0.0014955) (0.0488345)

CKLS 0.0266091 ­0.0028342 0.0058675* 0.7197319* ­7.9214722
(0.0321692) (0.002702) (0.0014916) (0.0488337)

Merton ­0.0120413 0.0 0.2780027* 0.0 ­114.24405 212.65 2
(0.0096906) (0.0068523) (< 0.0001)

CKLS ­0.0120413 0.0 0.2780027* 0.0 ­114.24405 212.65 2
(0.0096906) (0.0068523) (< 0.0001)

Vasicek 0.0263404 ­0.0027892 0.27861* 0.0 ­113.7454 211.65 1
(0.039679) (0.002796) (0.0069112) (< 0.0001)

CKLS 0.0263036 ­0.0027853 0.2778343* 0.0 ­113.7454 211.65 1
(0.0395881) (0.0027882) (0.0068481) (< 0.0001)

CIR SR 0.0239849 ­0.0026202 0.0185936* 0.5 ­18.052057 20.26 1
(0.0333743) (0.0026638) (0.000461) (< 0.0001)

CKLS 0.0239535 ­0.0026167 0.0185449* 0.5 ­18.052057 20.26 1
(0.0332996) (0.0026568) (0.0004571) (< 0.0001)

Dothan 0.0 0.0 0.0014024* 1.0 ­25.072527 34.30 3
(0.0000346) (< 0.0001)

CKLS 0.0 0.0 0.0014024* 1.0 ­25.072527 34.30 3
(0.0000346) (< 0.0001)

GBM 0.0 ­0.0005198 0.0014025* 1.0 ­24.71264 33.58 2
(0.0006127) (0.0000346) (< 0.0001)

CKLS 0.0 ­0.0005197 0.0014018* 1.0 ­24.71264 33.58 2
(0.0006124) (0.0000346) (< 0.0001)

Brennan­Schwartz 0.0328208 ­0.0033736 0.0014056* 1.0 ­24.18784 32.53 1
(0.0320716) (0.0028554) (0.000349) (< 0.0001)

CKLS 0.0327655 ­0.0033679 0.0014009* 1.0 ­24.18784 32.53 1
(0.0319718) (0.0028458) (0.0000345) (< 0.0001)

CIR VR 0.0 0.0 0.0001193* 1.5 ­129.09008 242.34 3
(0.00000294) (< 0.0001)

CKLS 0.0 0.0 0.0001193* 1.5 ­129.09008 242.34 3
(0.00000294) (< 0.0001)

CEV 0.0 ­0.0006618 0.0059095* 0.7185646* ­8.2633513 0.68 1
(0.000632) (0.0015005) (0.0487707) (0.4083)

CKLS 0.0 ­0.0006615 0.0059056* 0.7185646* ­8.2633513 0.68 1
(0.0006315) (0.0014993) (0.0487705) (0.4083)

6.3 Results for the period under inflation targeting

The results, shown in Table 5, change substantially for the period after the
adoption of inflation targeting (457 observations, from 4 February 2002 to 18
July 2011). Comparing the maximized Gaussian log likelihood values of the
nested models to the same value for the unrestricted model, the Brennan-
Schwartz model performs best, followed very closely by the CEV model,
the Geometric Brownian Motion used by Black and Scholes (1976), and the
Dothan model. The differences in log likelihoods between these four models
are practically zero; and they all perform well. The χ2 likelihood ratio tests
confirm this. Under the null hypothesis that the nested model restrictions
imposed are valid, we now fail to reject the same group of four models, with
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statistical rejection of the Merton, Vasicek, CIR (1985) and CIR (1980)
models.

Table 5
Gaussian Estimates of Continuous-Time Models of the Short-Rate

Under inflation targeting, 02/2002 - 07/2011
Model α β 2σ γ Log

Likelihood
2χ Test df

Unrestricted ­0.0084862 0.0004217 0.0018747* 0.9932485* 285.74889
(0.0253701) (0.0035477) (0.000694) (0.0873716)

CKLS ­0.0084881 0.0004218 0.0018754* 0.9932581* 285.74889
(0.0253902) (0.0035492) (0.000694) (0.0873659)

Merton ­0.0053756 0.0 0.1434664* 0.0 222.677 126.14 2
(0.006951) (0.0049151) (< 0.0001)

CKLS ­0.0053756 0.0 0.1434664* 0.0 222.677 126.14 2
(0.006951) (0.0049151) (< 0.0001)

Vasicek ­0.0036918 ­0.0001988 0.1434943* 0.0 222.67871 126.14 1
(0.0295928) (0.0033955) (0.0049401) (< 0.0001)

CKLS ­0.036914 ­0.0001987 0.01434658* 0.0 222.67871 126.14 1
(0.0295959) (0.0033948) (0.0049151) (< 0.0001)

CIR SR ­0.0055954 0.0000328 0.015589* 0.5 269.82843 31.84 1
(0.0264817) (0.0033892) (0.0005367) (< 0.0001)

CKLS ­0.0055955 0.0000328 0.0155895* 0.5 269.82843 31.84 1
(0.0264914) (0.0033893) (0.0005341) (< 0.0001)

Dothan 0.0 0.0 0.0018256* 1.0 285.1108 1.28 3
(0.0000625) (0.7348)

CKLS 0.0 0.0 0.0018256* 1.0 285.1108 1.28 3
(0.0000625) (0.7348)

GBM 0.0 ­0.0007434 0.0018245* 1.0 285.68935 0.12 2
(0.0006909) (0.0000625) (0.9422)

CKLS 0.0 ­0.0007432 0.0018231* 1.0 285.68935 0.12 2
(0.0006904) (0.0000625) (0.9422)

Brennan­Schwartz ­0.0085331 0.0004283 0.0018221* 1.0 285.74591 0.01 1
(0.0253553) (0.0035494) (0.0000628) (0.9384)

CKLS ­0.0085349 0.0004284 0.0018229* 1.0 285.74591 0.01 1
(0.0253756) (0.0035509) (0.0000625) (0.9384)

CIR VR 0.0 0.0 0.0002305* 1.5 268.26711 34.96 3
(0.0000079) (< 0.0001)

CKLS 0.0 0.0 0.0002305* 1.5 268.26711 34.96 3
(0.0000079) (< 0.0001)

CEV 0.0 ­0.0007421 0.001883* 0.9925148* 285.69302 0.11 1
(0.0006921) (0.0006965) (0.0873336) (0.7382)

CKLS 0.0 ­0.0007418 0.0018816* 0.992515* 285.69302 0.11 1
(0.0006916) (0.000696) (0.0873318) (0.7382)

What the four best performing models have in common is the form of
the diffusion function. The Brennan-Schwartz, GBM and Dothan models
restrict γ to one. And the CEV model produces an estimate of the para-
meter γ of 0.9925 for the period. (The unrestricted model estimates γ at
0.9932, and both these estimates are statistically significant.)8 The worst
performing models, namely Merton and Vasicek, restrict γ to zero (i.e., no
level effect). The CIR (1985) model implies a low volatility-on-level effect
(γ = 0.5), and performs slighly better than the latter two. The CIR (1980)

8Nowman (1998) finds support for the same set of models for Japan and the United
States.
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restricts γ to 1.5, implying a higher sensitivity of volatility to level than any
of the other models with a restriction on γ. Although it performs better
than Merton, Vasicek, and CIR (1985), it is also statistically rejected.

The findings are strongly indicative of a level effect for South Africa: the
conditional volatility is dependent on the level of the interest rate, with a
γ coeffi cient approximately equal to one. This is a higher level of depen-
dence (of interest rate conditional volatility on the interest rate level) than
that found for the period prior to inflation targeting. The estimates of the
same parameter for a set of advanced economies in Tse (1995), range from
-0.36 to 1.73 (obtained using the Generalised Method of Moments), with
"medium sensitivity" cases (defined somewhat arbitrarily) between 0 and
1.5. So, compared to the international evidence in Tse (1995), the sensitiv-
ity of interest rate volatility to its level for South Africa falls neatly within
the medium sensitivity category. The next table contrasts unrestricted es-
timates of γ for different countries, obtained through maximum likelihood,
and therefore more directly comparable.

Table 6
Comparison of International Estimates (Likelihood) of γ
Country γ Source

Australia 1.14 Brailsford and Maheswaran (1998)
Canada 0.44 McManus and Watt (1999)
France 2.83 Nowman (1998)
Italy 2.20 Nowman (1998)
Japan 0.98 Nowman (1998)
United Kingdom 0.28 Nowman (1997)
United States 1.36 Nowman (1997)

The likelihood estimates of γ vary from 0.28 for the United Kingdom,
to 2.83 for France. Our findings for South Africa for the sub-sample under
inflation targeting are closest to Nowman’s (1998) findings for Japan, using
the same estimation methods − both in terms of valid models, and the
nearly identical estimate of γ.

There is no significant evidence of mean reversion. Most models produce
negative estimates of the β coeffi cient, but these are extremely close to zero.
The same applies to α. The α and β parameters are not statistically signif-
icant in the unrestricted model. Lastly, observe that, again, the asymptotic
bias resulting from the CKLS approximation is extremely small, and the
estimates are almost identical for the CKLS approximation and the discrete
model used by Nowman.
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6.4 Discussion

The findings on the drift function parameters are consistent with the fact
that the four best performing models have totally different implications re-
garding the drift function: Dothan has no drift; GBM and CEV imply
constant proportional changes and no mean-reversion; while the Brennan-
Schwartz implies reversion to the mean.

The weak evidence of mean reversion, and the associated observation
that the best performing models have very different drift functions, is in
a sense favourable. Estimates of the drift parameters under the objective
probability measure (i.e., obtained through statistical analysis of market
data) cannot be used directly for pricing - we need a valid estimate of the
risk premium in the bond market. (This does not apply to the diffusion
parameters however − see section 2.) Finding that differences in the spec-
ification of the drift function have little impact on model performance is
therefore convenient. Second, as observed by CKLS, mean reverting drift
functions tend to make term structure models more complex to handle in
no-arbitrage analysis. Our findings suggest that, for South Africa, as found
for the United States by CKLS, models with simple specifications of the drift
function may still perform reasonably well, even if somewhat naïve, provided
that the specification of the diffusion function is a realistic reflection of the
relationship between interest rate volatility and the level of the interest rate.
This relationship is clearly a central feature of short-rate dynamics, in South
Africa and elsewhere.

7 Conclusion

Diffusion models which allow the conditional interest rate volatility to be
moderately dependent on the interest rate level provide the best empiri-
cal fit for South African data. The constant elasticity of variance model,
which imposes no quantitative restrictions on the sensitivity of interest rate
volatility to the interest rate level, is the only model that fits the data in
both sub-samples. Over the more recent sub-sample, after the adoption
of inflation targeting, we find support for three well-known models where
the magnitude of this sensitivity equals one, and for the constant elasticity
of variance model, which estimates it at approximately one − a moderate
level-effect, compared to available international evidence. We find no sta-
tistically significant evidence of a mean-reversion effect or a linear trend, at
the weekly frequency.

Our findings are of practical use for the valuation of short-dated interest-
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rate derivatives, in applications where assuming that one factor, namely the
short-rate, is the only state variable determining the current yield curve, is
not exceedingly simplistic, and can be justified by practical implementation
concerns. Of course, this will not be the case in many applications, and
investigating multi-factor models for the South African term-structure is a
natural extension of the present contribution. Our results will be relevant for
any multi-factor model of the term-structure with embedded assumptions
about the stochastic behavior of the South African short-rate.

The no arbitrage approach to interest rate modelling, which is now stan-
dard in mathematical finance and modern financial economics, was devel-
oped largely separately from monetary and macro-economics. Advances
incorporating no-arbitrage restrictions in monetary policy models, or en-
riching arbitrage-free models with explicit treatments of monetary policy,
are a very promising and challenging area for future research.9

8 Appendix

This derivation is standard, and follows Björk (2004), and Demange and Ro-
chet (2005) closely. It is included in an attempt to keep the paper relatively
self-contained. Applying Itô’s formula to F T gives:

dF T =
[
ΛrF

T
]
dt+ σt

∂F T

∂r
dW, (16)

where Λr is the Dynkin operator of r, defined by Λr = ∂
∂t + ∂

∂rµt + 1
2
∂2

∂r2
σ2t ,

given drt = µtdt + σtdWt, and applied to F T . Let αT = ΛrF
T and σT =

σt
∂FT

∂s , so dF
T becomes dF T = αTdt+σTdW. Similarly, Itô’s formula applied

to FS gives

dFS =
[
ΛrF

S
]
dt+ σt

∂FS

∂r
dW (17)

= αSdt+ σSdW, (18)

where Λr is the Dynkin of r, given drt = µtdt+ σtdWt, applied to FS .
Consider a portfolio of the T - and S-bonds, with weights (δT , δS) , and

associated dynamics:

dV = V

[
δT

(
dF T

F T

)
+ δS

(
dFS

FS

)]
, (19)

9See for example Ang, Dong, and Piazzesi (2005).
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or
dV

V
= δT (α̃Tdt+ σ̃TdW ) + δS (α̃Sdt+ σ̃SdW ) , (20)

where α̃T = αT

FT
, and σ̃T = σT

FT
. Re-arranging,

dV

V
= (δT α̃T + δSα̃S) dt+ (δT σ̃T + δS σ̃S) dW. (21)

The portfolio will have deterministic dynamics (i.e. no stochastic term)
if δT σ̃T + δS σ̃S = 0. Hence choose (δT , δS) as δT = σ̃S

σ̃S−σ̃T , and set δS =

1− δT = σ̃T
σ̃T−σ̃S . Now substitute back into

dV
V , to find

dV

V
=

(
α̃S σ̃T − α̃T σ̃S
σ̃T − σ̃S

)
dt, (22)

which has no stochastic term. Hence we constructed a risk-free portfo-
lio (i.e. a portfolio with deterministic dynamics). No-arbitrage equilib-
rium then requires that the portfolio earns the risk-free rate, dVV = rdt, or
(α̃S σ̃T − α̃T σ̃S) / (σ̃T − σ̃S) = r which, upon re-arranging, implies (α̃S − r) /σ̃S =
(α̃T − r) /σ̃T = λ − i.e., all bonds, of all maturities, will command the same
ratio of excess return (relative to the risk-free rate) to volatility in equi-
librium. This ratio represents the risk premium in the bond market, which
determines the martingale measure − formally, through the Girsanov kernel.

Re-arranging gives

ΛrF
T − rF T = 0 (23)

F T (T, r) = 1, (24)

where Λr is the Dynkin of r, for r given by drt = (µt − λtσt) dt+σtdWt. This
is the no-arbitrage term-structure equation. When solved for zero-coupon
bonds, it gives us a no-arbitrage yield curve, associated with a given short-
rate dynamics. Arbitrage-free prices of other interest rate derivatives are
obtained by specifying the terminal condition, on F T (T, r), to reflect the
derivative’s payoff at maturity.
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